
Enabling Green Video Streaming over
Internet of Things

(7th Quarter Deliverable)

Dr. Ghalib Asadullah Shah (PI)

Next-generation Wireless Networking (NWN) Lab,
Al-Khawarizmi Institute of Computer Science,

University of Engineering and Technology, Lahore

11-09-2015

About this Document

This document reports the activities performed in the 7th quarter of our project
‘Enabling Green Video Streaming over Internet of Things’ and the corresponding
deliverable to be submitted to ICT R & D Fund.

In the 1st deliverable, we conducted a detailed literature survey of IoT com-
munication protocols and identified the open challenges for IoM. One of these
challenges was to enable green and high data rate communication for IoM. For
this matter, a set of energy efficient and green communication MAC and routing
protocols were proposed in 4th deliverable. The performance analysis of these
communication protocols was done using the simulation studies in the 5th and 6th
deliverables. We implemented our proposed energy efficient power saving MAC
protocol (IEEE 802.11+) in NS-2 network simulator, and the green routing proto-
col (Green-RPL) was implemented in Cooja simulator. The performance analysis
of these protocols suggested high gains in energy efficiency.

In this (7th) deliverable, we provide the implementation specifications for the
our proposed IEEE 802.11+ power saving MAC protocol and Green-RPL routing
protocol, also the implementation details for video acquisition and encoding algo-
rithm. Our proposed power saving MAC protocol IEEE 802.11+ is implemented
in Contiki-OS. The Contiki-OS is run on Atmel SAM3X8E ARM Cortex-M3 CPU
based micro-controller. The IEEE 802.11 MAC layer is provided by the Atheros
AR9170 wifi chip. We have compared the performance of a recently proposed
power saving protocol MH-PSM and our proposed IEEE 802.11+ in a real im-
plementation. The analysis done shows significant improvement in energy effi-
ciency. Similarly, our proposed Green-RPL routing protocol is also implemented
in Contiki-OS. The implementation required some modification and addition in
the already existing RPL routing protocol implementation in Contiki-OS.

Moreover, in the previous deliverables, we identified the issue of complex multi-
media encoding, which restricts its implementation in IoM. Therefore, we proposed
a very simple encoder that needs to be run at the low power source with the en-
coded stream decoded on powerful machines at the receiving end. For this reason,
we proposed to reduce video encoder complexity (both space and time), by the
use of compressed sensing, while maintaining fairly low bit-rates (for transmis-
sion). In this (7th) deliverable, we have implemented the video acquisition and
video compression in bare-metal C on the 168MHz STM32F4 Discovery board.

1

Both of these MAC and protocol implementation and multimedia acquisition
and encoding algorithms are combined and transformed into a green camera node.
This green camera node acquires the video, compress it, and transmit it in an
energy efficient manner. The C language code for both of the above mentioned
implementations of power saving MAC and Green-RPL routing protocol and video
coding algorithm are given in the CD.

2
©Al-Khawarizmi Institute of Computer Science

Contents

1 Development of Green Multi-hop Routing Protocol 6
1.1 Introduction . 6
1.2 Development of Green-RPL . 7

1.2.1 Implementation . 7
1.3 Conclusion . 9

2 Implementation of IEEE 802.11+ in Contiki-OS 10
2.1 Introduction . 10
2.2 Preliminaries . 11

2.2.1 Contiki80211: Background 11
2.2.2 MH-PSM . 12

2.3 IEEE 802.11+ implementation . 12
2.4 Results . 14

3 Implementation of Change-based Block Suppression video coding 17
3.1 Introduction . 17
3.2 Video Acquisition and Storage . 18

3.2.1 Data transfer from DCMI to SD card 19
3.2.2 Conversion from Inter-leaved YUV to Planer YUV, and Buffer

size . 20
3.2.3 Block Columnization . 20
3.2.4 Compressed Sensing and Further Compression 20
3.2.5 Pass Data to Transmission Module using SPI 21
3.2.6 Reconstruction and Recovery 21
3.2.7 Results . 22

4 Conference paper on energy efficiency in IEEE 802.11 for IoM 25

3

List of Figures

2.1 Our Hardware Platform . 11
2.2 Intervals in which node stays in sleep state. 16
2.3 Energy consumed by node in awake state. 16

3.1 Nested video encoding-decoding. 18
3.2 The Change based block Suppression Architecture(CBS). 18
3.3 mPSMP Operation for a 5 Node Network 23
3.4 mPSMP Operation for a 5 Node Network 23
3.5 mPSMP Operation for a 5 Node Network 23
3.6 mPSMP Operation for a 5 Node Network 24

4

List of Tables

2.1 Comparison of IEEE 802.11+ and MH-PSM scheme 15

5

Chapter 1

Development of Green
Multi-hop Routing Protocol

1.1 Introduction

In an IoT system the sensor devices are deployed in large numbers and mostly
these are battery operated. Thus, their operation is must be extremely energy
efficient to prolong the network lifetime. With the help of a multi-hop routing
protocol, the network nodes communicate with the sink node via different multi-
hop paths. Note that not every path consumes same amount of energy in LLNs.
Since, nodes can experience different channel conditions or the network topology
can also contribute towards the number of transmissions a packet requires before
it is successfully transmitted towards the sink node. However, if a routing protocol
efficiently selects those paths which consume less energy then significant amount
of energy can be saved.

Moreover, the multimedia communication is bulky in nature and require large
number of packet transmission. Thus, the multimedia devices are more energy
hungry and their energy efficient operation is very critical for longer network life-
time. Although many previous studies have addressed energy efficiency issue in
resource constrained networks. However, in prior studies have not considered mul-
timedia communication over the resource constrained devices in an IoT system.
Although lot of work is done on green communication for various wireless network-
ing technologies, yet enabling green communication over IoT systems is not given
any consideration.

Routing Protocol for Low Power and Lossy Networks (RPL) is a proactive
distance vector routing protocol for LLNs. RPL forms a tree like network topology
by maintaining a directed acyclic graph (DAG). In RPL each sensor node chooses a
preferred parent towards the root node based on specific routing policies. RPL uses
multiple routing metrics and constraints while optimizing an objective function
to select the best path. The standard provides the choice to select appropriate

6

CHAPTER 1. DEVELOPMENT OF GREEN MULTI-HOP ROUTING
PROTOCOL

objective functions as per the application requirements, which makes RPL highly
adaptive and dynamic. However, so far no optimizations have been made for RPL
to support multimedia communication.

In this work, we implement an energy efficient green routing protocol for re-
source constrained multimedia devices in IoM named Green-RPL. The proposed
routing protocol is an enhanced version of the RPL protocol that is designed for
IoT systems. In our proposed Green-RPL implementation the carbon footprints
emission is minimized provided that the application delay requirement and en-
ergy efficiency is guaranteed. The delay bound for multimedia applications is
pre-determined. For a video application the frames can be of different sizes yet
the transmitter node must ensure that 25 frames are successfully transmitted in
1 sec. Similarly, the energy efficiency is ensured by considering the quality of the
intermediate links towards the root node, the energy already consumed by the
possible preferred parent node, and by evaluating the potential of the parent node
to support traffic requirements for yet another child node. To evaluate a parent
node as per these constraints and requirements, an optimization model for the
proposed Green-RPL routing protocol is designed in the following part of this sec-
tion. Among all the parent nodes of a specific sensor node, the solutions of the
optimization problem gives the preferred parent.

1.2 Development of Green-RPL

1.2.1 Implementation

The proposed Green-RPL routing protocol is implemented in Contiki v2.7. Con-
tiki is a wireless sensor network operating system (OS) and consists of the kernel,
libraries, the program loader, and a set of processes. It is the most popular oper-
ating system for IoT things and it has been vastly used by the research community
for simulation and real-implementation of IoT based wireless networks. Contiki
provides mechanisms that assist in programming the smart object applications. It
provides libraries for memory allocation, linked list manipulation and communi-
cation abstractions. It is developed in C, all its applications are also developed
in C programming language, and therefore it is highly portable to different ar-
chitectures. The Contiki operating system provides modules for different tasks
(layers).

Contiki-OS contains a complete communication stack that is proposed by the
research community for the IoT. The RPL routing protocol functionality is divided
into multiple files each performing one of the major tasks of routing operation.
RPL routing protocol files and their functionality are as follows:

� rpl-dag.c is responsible for creating and interpreting the DODAG frames,

� rpl-timers.c contains all the timers for the transmission of DIO and other
control packets,

7
©Al-Khawarizmi Institute of Computer Science

CHAPTER 1. DEVELOPMENT OF GREEN MULTI-HOP ROUTING
PROTOCOL

� rpl-private.h contains the definition of routing parameters,

� rpl-of0.c implements the functionality of hop-count based objective function,

� rpl-mrhof.c implements the functionality of ETX based objective function,

� rpl-icmp6.c specifies the structure of formats of the control packets,

� rpl-ext-header.c implements the header configuration for the RPL control
packets,

� rpl-conf.c contains the configuration settings for RPL such as which objective
function is used and so on,

� rpl.c combines the whole functionality of RPL protocol by utilizing the func-
tionality of other files.

This division of RPL routing protocol functionality makes it easier to program
different objective functions and tuning the values of key parameters to modify
the routing protocols performance. To implement our Green-RPL routing protocol
we need to add another objective function in the existing RPL implementation.
The new objective function is named ENERGY ROUTE. New routing metrics i.e.,
energy, idle time, path cf, are integrated in the rpl.h file in the rpl metric container
structure. Moreover, already existing metrics i.e., etx, avg delay to sink, will also
be utilized in the Green-RPL routing operation. For energy and idle time metrics,
Contiki’s build in energest model is employed. The energest model determines
the instantaneous amount of time a node spent in listen, transmit, sleep, and
idle states. Since, each network module designed by a specific vender draws a
predetermined amount of current at each state. Therefore, using the energest
model the energy utilized by a particular node can be computed. Moreover, the
IoT wireless motes usually operate using specific batteries such as AA-battery
with 2700mAh capacity. Thus, we combined the energest model with a given
set of values for current, voltage, and battery capacity, in order to compute the
energy consumed by a node and accordingly the energy consumed by the route by
aggregating the energy of individual nodes. For this implementation the changes
were made in energest.c file that is one of the system files for the Contiki-OS.

The local routing metrics calculated by a network node needs to be shared with
its neighboring nodes. In RPL routing protocol the routing metrics are exchanged
via the DIO control packets that is transmitted periodically at specific intervals.
Besides default parameters, we integrated idle time, path cf, and route energy, in
the DIO packet. This information is received by the child nodes which evaluate the
possible parent node using the constraints mentioned in the optimization model
presented in previous section. If the constraints are satisfied then the path metric
is calculated that is the path cf (carbon footprints of the route via considered
possible parent node). The implementation is done in calculate path metric()
function in the rpl-mrhof.c file. Once the path metric for a possible parent node

8
©Al-Khawarizmi Institute of Computer Science

CHAPTER 1. DEVELOPMENT OF GREEN MULTI-HOP ROUTING
PROTOCOL

is calculated, then it is compared with the path metric of current parent node. If
the new path metric in lower than the current parent node than the new parent is
selected and vice versa.

1.3 Conclusion

In this deliverable an enhanced version of RPL for IoM, Green-RPL, is imple-
mented in Contiki-OS. The proposed Green-RPL routing protocol minimizes car-
bon footprints emission and energy consumption, and supports application spe-
cific QoS requirements by considering various constraints while selecting routes
towards the root node. The performance of the proposed Green-RPL scheme was
extensively studied in previous deliverable with the help of a simulation study
is carried out in Cooja simulator for Contiki-OS. Its performance was compared
with the existing objective functions and Green-RPL performed significantly bet-
ter. The same code implemented in Contiki-OS is then programmed on an Atmel
SAM3X8E ARM Cortex-M3 CPU based micro-controller, that is component of
the green camera node.

9
©Al-Khawarizmi Institute of Computer Science

Chapter 2

Implementation of IEEE
802.11+ in Contiki-OS

2.1 Introduction

We have implemented our proposed power saving mechanism, i.e. IEEE 802.11+
protocol, in Contiki Operating System (Contiki OS) which is one of the most pop-
ular operating systems for embedded systems and IoT. To achieve this purpose, an
open source IEEE 802.11 radio link layer implementation for Contiki-OS named
as Contiki80211 is used. The Contiki80211 is proposed in [1] to enable experimen-
tation with 802.11 MAC layer management mechanisms on embedded devices,
such as sensor motes and IoT smart objects. Recently, a multi-hop IEEE 802.11
PSM mechanism, named as MH-PSM, is proposed in [2] whereby authors intro-
duced a traffic announcement scheme which facilitates multi-hop communication.
We modified the implementation of MH-PSM in Contiki-OS and compared our
proposed power saving mechanism IEEE 802.11+ with MH-PSM implementation
in Contiki-OS. This comparison proved that our IEEE 802.11+ protocol is more
energy efficient than MH-PSM protocol.

In subsequent section, we give essential details of Contiki80211 implementa-
tion along with the IEEE 802.11+ protocol we implemented in Contiki80211 to
accomplish our goal, i.e. to decrease the duty cycling of a mote (station) as much
as possible. The fundamental idea behind our implementation is to enable mul-
timedia traffic communication among stations while reducing their duty cycling
period and keeping the packet loss rate within acceptable limitations.

10

CHAPTER 2. IMPLEMENTATION OF IEEE 802.11+ IN CONTIKI-OS

2.2 Preliminaries

2.2.1 Contiki80211: Background

Contiki80211 is an open source implementation running on Atmel SAM3X8E ARM
Cortex-M3 CPU based micro-controller, Fig.2.1. The hardware configuration for
the Atmel SAM3X8E ARM Cortex-M3 MCU is 96 KB SRAM, 512 KB Flash.
WiFi is connected through the USB bus and Cortex-M3 MCU. Contiki80211 so-
lutions uses Atheros WiFi + AR9104, AR9170AR9170is 802.11n draft standard,
support USB2.0 baseband AR9104processor,supports dual-band RF. Contiki80211
is composed of three main components which include IEEE80211Lib, AR9170 ra-
dio driver and AR9170 USB driver.

� IEEE80211Lib is a platform independent library which connects the uIP
protocol stack with the radio link layer. It implements various IEEE 802.11
IBSS management operations such as scan, join, create and leave and IBSS
parameter configuration. The main element of IEEE80211Lib is IEEE802.11
Scheduler which encapsulate IP Packet into IEEE802.11 frame and deliver
them to AR9170 Driver and vice versa do the same for incoming frames.
Duplicate frame detection by ieee802.11 module is also incorporated. Fi-
nally, it implements MH-PSM algorithm, details of which are given in next
sub-section, and is responsible for ATIM Packet creation/parsing and main-
taining the database of list of awake nodes.

� AR9170 radio driver manages the transmission (Tx) and reception (Rx)
queues and handles the hardware command responses from/to the 802.11
interface. The main element of this component is AR9170 Scheduler, which
at each execution round, inspects the contents of commands, Tx and Rx
queues and dispatch next in-line task prioritizing command over Tx/Rx
packet processing. It access Tx and Rx queues in round robin fashion to
ensure fairness in packet handling. AR9170 waits for Pre-TBTT interrupt

Figure 2.1: Our Hardware Platform

11
©Al-Khawarizmi Institute of Computer Science

CHAPTER 2. IMPLEMENTATION OF IEEE 802.11+ IN CONTIKI-OS

from 802.11 interface in order to prepare 802.11 protocol for upcoming ATIM
Window. AR9170 poll handler integrate the AR9170 Scheduler and PSM
Scheduler and implements lower level PSM functionality like radio duty-
cycling.

� AR9170 USB driver is implemented using Atmel USB Host library which
provide platform independent routines for installation of USB Devices, enu-
merations and allocation of required endpoints for communication with de-
vices with interface over USB. It includes low level USB on-the-go drivers
and on top of these routines, functions for reading and writing from/to al-
located endpoints are implemented.

Thus, the main functionalities of Contiki80211 include Contiki80211 drivers,
based on Linux open source drivers carl9170 (a Linux kernel driver supporting the
Atheros AR9170 802.11 draft-n USB chipset), developed and optimized. IEEE
802.11 MAC Layer Management Entity (MLME) state machine that implements
the Ad hoc mode and PSM mechanism and micro IPv6(uIPv6) implementation.

2.2.2 MH-PSM

MH-PSM is a multi-hop power saving saving mechanism based on IEEE802.11
PSM standard. This scheme propagates Announcement Traffic Indication Mes-
sages (ATIM) along multi-hop paths to ensure that all intermediate nodes remain
awake to forward the pending data frames within a single beacon interval. The
focus of MH-PSM is to reduce latency and decrease end-to-end delay in multi-hop
networks. However, a fundamental drawback of MH-PSM scheme occurs in situa-
tions when the received ATIM packet is not followed by data packet. This happens
when a packet generated at application layer is not yet prepared at underlying lay-
ers to be transmitted in current beacon interval. Moreover, a node is supposed to
stay awake after the reception of data packet for whole beacon interval.

Consequently, MH-PSM protocol although reduces the end-to-end delay over
multi-hop nodes compared to standard PSM mechanism, but the possibility that
ATIM packet may not be followed by data packet immediately is not perceived
which results in wastage of energy since MH-PSM mandates each node to stay
awake for whole beacon interval. This increases the wake-up time of each node
consequently more energy will be consumed.

2.3 IEEE 802.11+ implementation

In our proposed power saving mechanism, named IEEE 802.11+, we define a PS-
Frame to let the receiver know that it should expect its traffic in current Beacon
Interval. When a transmitting node intends to send traffic to receiving node, it
sends a PS-Frame to that node in start of Beacon Interval so that the receiving

12
©Al-Khawarizmi Institute of Computer Science

CHAPTER 2. IMPLEMENTATION OF IEEE 802.11+ IN CONTIKI-OS

node stays awake to receive the data traffic. A node which receives PS-Frame stays
awake till the reception of data packets and consequently, goes to doze state for
the remaining duration of Beacon Interval.

In MH-PSM, the ATIM packet is transmitted to keep the receiving station in
awake state. However, the sizes of ATIM Window and Transmission Window are
kept equal. Thus, it is obligatory for each station to remain awake at-least for
half of the beacon interval duration even if it has no traffic scheduled in current
beacon interval. On the contrary, we modified the duration of ATIM Window in
Contiki80211 (i.e. PS-Frame Window Duration) to 25% of beacon interval (50ms
when beacon interval is 200ms). This helps in reducing the duty-cycling of a
network node for which traffic is not scheduled in a given Beacon Interval.

Furthermore, in proposed power saving mechanism implementation, we address
the issues highlighted in previous sub-section and allows a node to go into sleep
mode whenever the received PS-Frame packet is not followed by data packet at
the end of PS-Frame Window Duration. This is done by setting a flag at the end
of PS-Frame Duration. Moreover, IEEE 802.11+ includes adaptability features
which allows a station to go into doze state as soon as it receives its pending
traffic.

In order to further minimize the duty-cycling, a node is allowed to go into sleep
mode by considering the number of pending packets in packet reception queues at
each station. When a node receives a packet it checks number of pending packets
in reception queue and if there is only single packet left in reception queue then
it schedules the power saving mode to turn on, and hence, goes into sleep state
for the remaining duration of beacon interval. This helps in enhancing the sleep
duration of each node. Finally, Beacon Interval, PS-Frame Window Duration and
inter-packet arrival rate are modified and adjusted so as to reduce the traffic loss
to minimum.

To carry out above mentioned protocol operations, we proposed several changes
in Contiki80211 implementation. Firstly, in IEEE80211Lib, following C files are
changed:

� ieee80211 rx.c Within ’ieee80211 rx process-data mpdu()’ function, after
processing the current data packet we check if the number of remaining
packet in pending reception queue linked list is only 1. If this is true, then
a node is allowed to go into sleep state to conserve energy for remaining
beacon interval.

� ieee80211 ibss.c Within the IBSS mode implementation, BEACON INTERVAL
and PS-Frame Window Duration (ATIM Window Duration) are modified.

In AR9170 radio driver, following changes are implemented:

� ar9170.h A flag named as ’recv ps frame flag’ is declared within ps manager
structure to avoid multiple callbacks to power saving function if a node is
already scheduled to go into sleep state.

13
©Al-Khawarizmi Institute of Computer Science

CHAPTER 2. IMPLEMENTATION OF IEEE 802.11+ IN CONTIKI-OS

� ar9170 psm.c ’recv -ps frame flag’ is checked at the end of PS-Frame Win-
dow to determine if the pending packets in reception queue of given node is
zero. If this flag is not set, then it essentially mean that currently there is
no packet to be received in current beacon interval so node’s power saving
state (ps.state) is set to true to make the node go into sleep state.

� rtimer.c rtimer set()function is used to mark the end of PS-Frame Window
duration and schedule the change in power state of a node afterwards within
ar9170 psm.c file.

� ar9170 scheduler.c: The function ’ar9170 sch powersave check()’ in AR9170-
Scheduler is modified to check and modify the current power state of a node
multiple times within one beacon interval.

� ar9170rx.c: The functional routine which handles the command responses
from the ar9170 device, ’ar9170 handle command response()’, to awake the
node at pre-target-beacon-transmission-time and to calculate sleep duration
of each node in one beacon interval.

In AR9170 USB driver following C files are changed:

� usb-cmd-wrapper.c: Doze ACTIVE PIN is set to high for LED Debug-
ging, several header files are included for this purpose. Callbacks to function
ar9170 powersave() is modified and whenever a node is intended to go into
sleep state then instead of scheduling the ’ar9170 psm schedule powersave()’
function, ar9170 powersave()is directly called to save the scheduling time.

Finally, ’Avgsleep.h’ Header file is created which contains declaration of several
variables for average sleep duration calculation. This header file is included exter-
nally in several C files namely ’usb cmd wrapper.c’, ’udp-server.c’, ’ar9170rx.c’.

2.4 Results

The findings of the real implementation are given in Table 2.1, Figure 2.2 and
Figure 2.3. The experiment was carried out for 316.8 secs. The video acquired
at a sender node is compressed and then it is transmitted to the receiver node
which is operated in power saving mode. We did many experiments and found the
similar results as summarized in Table 2.1.

Firstly, the power saving node is operated with our proposed IEEE 802.11+
protocol and then the same network scenario is run with MH-PSM power saving
protocol. As shown in Table 2.1, in our proposed scheme the node stays longer
in sleep state and as a result the energy is saved. Alternately, the time spent in
awake state is decreased which essentially means that the node consumes lesser
energy.

14
©Al-Khawarizmi Institute of Computer Science

CHAPTER 2. IMPLEMENTATION OF IEEE 802.11+ IN CONTIKI-OS

Similarly, in Figure 2.2 and Figure 2.3, in our 802.11+ scheme the node stays
longer in sleep state and the average time spent in sleep is far more as compared
to MH-PSM. Correspondingly, the energy utilized in awake state is higher in MH-
PSM as compared to 802.11+.

Table 2.1: Comparison of IEEE 802.11+ and MH-PSM scheme

Parameters IEEE 802.11+ MH-PSM comments
Experimentation Time 316.8 secs 316.8 secs system active time

Time spent in Sleep state 192.6 secs 150.8 secs more is good
Energy spent in Awake state 62000 mJ 83000 mJ less is good
Duty-cycling (Radio ON time) 39.2 % 52.5 % less is good

Energy consumed per sec 196.2 mJ 262.6 mJ less is good

15
©Al-Khawarizmi Institute of Computer Science

CHAPTER 2. IMPLEMENTATION OF IEEE 802.11+ IN CONTIKI-OS

0 20 40 60 80 100
0

0.1

0.2
Avg.147

Avg.112

Sleep Intervals

S
le

ep
p

er
io

d
p

er
in

te
rv

al
(s
ec
s)

IEEE 802.11+

MH-PSM scheme

Figure 2.2: Intervals in which node stays in sleep state.

0 20 40 60 80 100
0

20

40

60

80

100

Avg.27.2

Avg.43.2

Awake Intervals

E
n

er
gy

p
er

aw
ak

e
p

er
io

d
(m

J
)

Proposed scheme

MH-PSM scheme

Figure 2.3: Energy consumed by node in awake state.

16
©Al-Khawarizmi Institute of Computer Science

Chapter 3

Implementation of
Change-based Block
Suppression video coding

3.1 Introduction

Development of low complexity video coding techniques/algorithms has been ac-
celerated by the expected increase in the up-link streaming from IoT (Internet
of Things) enabled multimedia devices(IoM devices), and multimedia devices in
general. Secondly, severe constraints on the cost, power, bandwidth and com-
putational capability of IoM devices bar the usage of current video coding tech-
niques(standards) such as H.265 and VP9 due to their high computational com-
plexity on the encoder side. The high encoder complexity of H.265 and VP9 is
because they are designed for down-link streaming applications. However, recently
emergent techniques from the area of Compressive Sensing(CS), have given rise to a
new generation of low complexity video encoders. Unlike traditional video coding,
in compressive sensing based techniques, a small number of linear measurements
of the scene are taken at sub-Nyquist rates, at the acquisition stage, before being
passed on to the encoder. Thus, compression is inherent in the acquisition pro-
cess. In order to match IoM device constraints, we have implemented a new video
compression technique, which shifts the complexity from encoder to decoder.

We have designed an adaptive video encoding/decoding scheme in which com-
pressed sensed video data is further compressed within the CS domain. In this
technique we have introduced a nested approach in which CS frames are further
compressed(during and) after acquisition on the encoder side, and on the decoder
side the full CS frames are reconstructed(using compression information) and then
recovery algorithms are used for the reconstruction of video frames. Our CBS tech-
nique is independent of the type of measurement matrix and the recovery technique
used, provided that the CS technique is block based. The further compression has

17

CHAPTER 3. IMPLEMENTATION OF CHANGE-BASED BLOCK
SUPPRESSION VIDEO CODING

MB Suppression
Reconstruction of

CS Frames.

Recovery

Algorithms

Video

Acquisition: MB byMB

Compressive Video

and Frame by Frame

Encoder Decoder

Nested Stages

CS Stages

Figure 3.1: Nested video encoding-decoding.

two parts: pre-acquisition block suppression based on block analysis at the start of
each GoP; post-acquisition block suppression based on block analysis on a frame by
frame basis. Using our block suppression technique, individual MB’s don’t need to
be labeled. Instead, a two dimensional binary array(with one element representing
one MB) is sent with each frame.

Pre Acquisition

MB Suppression
P (i,j)m

P (i,j)1

S (i,j)1

S (i,j)n

Post Acquisition

MB Suppression

pattern

Suppression

assignment
P (i,j)1

threshold

MB suppression

pattern

MB suppression

pattern

(i,j)ty

t (i,j)−1y’

(i,j)ty

t (i,j)−1y’

Compressed

Frame

MB analysis

s2

s1

is the current MB, regardless of frame type

is the last updated MB

Figure 3.2: The Change based block Suppression Architecture(CBS).

How the information in F
′
t and It (in Fig.3.2) is used to recover the original

CS frame has been discussed in section 3.2.6.

3.2 Video Acquisition and Storage

We have used the OV7670 CMOS camera for acquisition of VERY low resolution
(160*96), raw (YUV4:2:2) video at 30fps. The OV7670 camera provides an I2C
(compatible) interface for configurations. A number of different configurable op-
tions are there, for example:

�VGA, QVGA, QQVGA, CIF and QCIF resolutions
�RGB raw, RGB 5:5:5, RGB 5:6:5, YUV 4:2:2,
�Up-to 30fps frame rate.
�Color correction options, e.tc.

Particularly we have done all the processing on the Luma (Y) component i.e. on
the gray scale video. This is only to help reduce the data size, and hence pro-
cessing and transmission times. Also it is normally considered sufficient, as the
Luma component contains all the motion information. The OV7670 provides an

18
©Al-Khawarizmi Institute of Computer Science

CHAPTER 3. IMPLEMENTATION OF CHANGE-BASED BLOCK
SUPPRESSION VIDEO CODING

8bit parallel data interface and a few other control pins compatible to the DCMI
interface on the discovery board. The DCMI interface is a standard camera in-
terface. When DCMI is used, the pixel data comes from the 8bit parallel data
interface into the 32bit DCMI data register. Each pixel is of two bytes therefore
two pixels are written to the DCMI data register at a time. And before the next
two pixels arrive, the DCMI data register has to be read. Otherwise data will be
lost. The data rate requirements for initial storage of the raw video frames are:

datarate = framespersec× pixelsperframe× bytesperpixel
= 25 × (160 × 96) × 2
= 1.536MB/sec

For instance, with the QQVGA resolution, one frame takes 37.5Kbytes of mem-
ory, so if the whole frame is stored in the SRAM for processing, and considering
that the next frame will also be coming in (as well as the compressed frame),
therefore the 192Kbyte SRAM will be stretched. The Kiel uVision5 compiler does
not allow for creation of a buffer greater than 60Kbytes in the SRAM. So in order
to store a frame in a single buffer we have gone for the resolution, 160*96. On the
other hand, the write speed for the 1MB on-board Flash of the discovery board
is 128KB/sec. At this write speed, the video frame cannot be stored in real time
for processing. Therefore we have used an external SD card to store video data.
The read write speed of SD cards depends on which class they belong. Class2 and
class4 SD cards give data read/write speeds of 2MB/sec and 4MB/sec respectively.
Class4 to class10 cards give data read/write speeds from 4MB/sec to 15MB/sec.
Since our required data rate is more than 4MB/sec and we also have to do other
read, write operations, so we have selected the class10 SD card, which is FAT32
filesystem compatible.

3.2.1 Data transfer from DCMI to SD card

How the data is transferred from the 32bit DCMI data register to the SD card
has a few very important twists to it. Data has to be picked, continuously, from
the DCMI data register at a very high frequency so the processor will remain
unnecessarily busy. However the DMA (Direct Memory Access) controller on the
STM32F4 facilitates the transfer of data from one location to another in embedded
system without intervention from the central processor (CPU). Therefore we are
using the DMA to transfer data from the DCMI data register. On the other hand
there are two standard methods for writing data to the SD card, the uSD and
the Fat FS. We have preferred the later because files saved under the Fat FS
filesystem are directly interpreted on any windows OS. Since we have to perform
sparce recovery of our video stream on some remote computer, the video data
will be more easily understood if saved under the fat FS filesystem. However the
Fat FS filesystem uses the physical layer interface (SDIO/SPI) with the ST card

19
©Al-Khawarizmi Institute of Computer Science

CHAPTER 3. IMPLEMENTATION OF CHANGE-BASED BLOCK
SUPPRESSION VIDEO CODING

to transfer the data to the SD card so the DMA controller cannot be given the
address of the SDIO port. Therefore we need a buffer in the middle where data is
dumped by the DMA and then Fat FS write command transfers the buffered data
to the SD card. This buffer is maintained in the SRAM due to it’s fast read/write
speed.

3.2.2 Conversion from Inter-leaved YUV to Planer YUV,
and Buffer size

The pixel data of each frame flows into the DCMI, pixel by pixel, in a raster
scan fashion. This raster scanned data is Inter-leaved YUV, and since we have to
process the Y component separately, we have converted the data to Planer YUV
(before writing to the SD card). The Fat FS also uses a DMA channel to read
and write, to and from the SD card. We are using the end of frame interrupt,
to perform this data format conversion and write to the SD card, before we get
the next frame. During this conversion the DCMI is disabled and as a result, the
actual frame rate that we are getting is about 20Fps. It is obvious from here that
the remaining four processes (Block Coloumnization, Compressed Sensing, Further
Compression and sending data on the SPI to the transmission module) cannot be
performed while video acquisition is taking place. Therefore after saving 28 Planer
frames in the SD card, we disable the DCMI and start the remaining processes,
one by one.

As mentioned in the previous section we are forced to perform all the data
manipulations inside the 192KByte SRAM, due to it’s speed. Each of the above
mentioned processes requires buffers to be created in the SRAM, on the other hand
the SRAM is not large enough for the creation of all such buffers in the ’static’
form. Therefore we have used dynamic memory allocation to create and destroy
buffers for each process one-by-one.

3.2.3 Block Columnization

We are performing CS on a MB by MB basis (as described in our Q5 report in
detail). Therefore in this process we have rearranged the data into columns, where
each column is one MB. This is done by reading the whole Y component from the
SD card, placing chunks into columns and then writing the columnized data back
to the SD card.

3.2.4 Compressed Sensing and Further Compression

At this stage we have 28 frames and each frame has 60 columnized MB’s. Now
we apply CS on each MB one by one and write the CS MB’s back to the SD card
using f write function of Fat FS. The measurement matrix (i.i.d Gaussian Random
matrix) is stored in the SD Card. For each measurement we read one row of the

20
©Al-Khawarizmi Institute of Computer Science

CHAPTER 3. IMPLEMENTATION OF CHANGE-BASED BLOCK
SUPPRESSION VIDEO CODING

measurement matrix from the SD Card (using the f read function), perform the
floating point matrix multiplication using DSP library, and store the measurement
in a CS-MB column-matrix. Implementation using the DSP library for matrix
multiplication greatly reduces the computational complexity of the compression
algorithm. Also the use of FPU for these calculations reduces the CPU usage by
about 6-7 times. In this way each row of the measurement matrix is read one by
one and the same procedure is repeated until the desired number of measurements
are taken. The CS-MB column-matrix is then saved to the SD Card. The same
procedure is repeated for all the MB’s. We have successfully tested this process,
however since it takes quite a bit of time, we have bypassed this stage so that the
rest of the system can be tested and results be compiled.

Now that we have 60 columnized CS-MB’s (for each frame), we retrieve CS-
MB’s (from the SD card) of neighboring frames to calculate SAD values. The
SAD calculations are also performed using the DSP library in the FPU format,
reducing the computational complexity of the further compression implementation.
The SAD values are subsequently used for block suppression in accordance with
our CBS technique. The finally compressed frames are stored back into the SD
card, ready to be passed down to the transmission module.

3.2.5 Pass Data to Transmission Module using SPI

Once the further compression is complete, the compressed data is read from the
SD card using Fat FS and stored in a dynamic buffer. The data size for 28 frames
is in hundreds of Kilo Bytes, whereas the packet size range is 1-2 Kilo Bytes. On
the other hand each MB is of 256 K Bytes (16*16), so we have decided to use
packet size of 1792 Bytes i.e. 7 MB’s in each packet. In order to make sure that
data is not lost across the SPI we have placed a 3 byte code at the start of each
packet. This code is generated using MOD operations on the size of the packet.
On the Transmission module the product of the first three bytes is checked against
the expected packet size. If correct, it means the SPI is working fine. Recovery
of these frames is performed in the MATLAB environment on any WINDOWS
system as described in the next section.

3.2.6 Reconstruction and Recovery

Reconstruction is performed at the decoder and has two stages. First, the full
CS frames are recovered and then recovery algorithms are used for recovery of
video frames. The compressed frame received by the decoder has two parts. In
the first part all the unsuppressed, columnized MB’s are bundled together in the
frame F̂t such that each column, F̂t(:, i), is a MB. The second part is a bit-array, It
which contains the compression information. So for reconstruction of CS frames we
traverse through It and for every zero entry, we place a copy of the corresponding
MB from the previous reconstructed CS frame, Ft−1, into the current reconstructed

21
©Al-Khawarizmi Institute of Computer Science

CHAPTER 3. IMPLEMENTATION OF CHANGE-BASED BLOCK
SUPPRESSION VIDEO CODING

CS frame, Ft. Similarly for every non-zero(i.e. one) entry in It we place the next-up
MB from F̂t into the current reconstructed CS frame, Ft.

Once the current CS frame is reconstructed, the video frame can be recovered
using any suitable recovery algorithm in the bases in which the signal of interest
is sparse. The elements of the vectorized measurement vector are quantized indi-
vidually by an 8-bit uniform scalar quantizer. At the decoder we are using total
variation minimization(min-TV) [3, 4], for the recovery.

Algorithm 2 Reconstruction of CS Frames

Input: F̂t, It
Output:

for i = 0 to size(It) do
if(It(i) = 0)

Ft(:, i) = Ft−1(:, i)
else

Ft(:, i) = F̂t(:, j)
j + +

end if
end for

3.2.7 Results

The video acquired from the physical environment is encoded using our proposed
encoding scheme. This gives us encoded and compressed video. The results shown
on the right side (right column) depict some of the frames in which compression
has been applied. On the left side, the figures show the corresponding frame
which is received at the receiver node. The network packet losses result in loss
of information since some of the macro-blocks are lost. However, as shown in
the following figures the video quality is still reasonable which shows that the
communication protocols work in an acceptable manner.

22
©Al-Khawarizmi Institute of Computer Science

CHAPTER 3. IMPLEMENTATION OF CHANGE-BASED BLOCK
SUPPRESSION VIDEO CODING

Figure 3.3: mPSMP Operation for a 5 Node Network

Figure 3.4: mPSMP Operation for a 5 Node Network

Figure 3.5: mPSMP Operation for a 5 Node Network

23
©Al-Khawarizmi Institute of Computer Science

CHAPTER 3. IMPLEMENTATION OF CHANGE-BASED BLOCK
SUPPRESSION VIDEO CODING

Figure 3.6: mPSMP Operation for a 5 Node Network

24
©Al-Khawarizmi Institute of Computer Science

Chapter 4

Conference paper on energy
efficiency in IEEE 802.11 for
IoM

An international conference paper on energy efficiency in IEEE 802.11 for IoM
that was submitted in the previous deliverable is accepted to be published in
IEEE CCNC 2016 to be held in January 2016, in Las Vegas, USA.

25

CHAPTER 4. CONFERENCE PAPER ON ENERGY EFFICIENCY IN
IEEE 802.11 FOR IOM

26
©Al-Khawarizmi Institute of Computer Science

Bibliography

[1] Ioannis Glaropoulos, Vladimir Vukadinovic, and Stefan Mangold. Con-
tiki80211: An ieee 802.11 radio link layer for the contiki os. In High Per-
formance Computing and Communications, 2014 IEEE 6th Intl Symp on Cy-
berspace Safety and Security, 2014 IEEE 11th Intl Conf on Embedded Software
and Syst (HPCC, CSS, ICESS), 2014 IEEE Intl Conf on, pages 621–624. IEEE,
2014.

[2] Vladimir Vukadinovic, Ioannis Glaropoulos, and Stefan Mangold. Enhanced
power saving mode for low-latency communication in multi-hop 802.11 net-
works. Ad Hoc Networks, 23:18–33, 2014.

[3] Z. Liu, H. Vicky Zhao, and A. Y. Elezzabi. ”BLOCK-BASED ADAPTIVE
COMPRESSED SENSING FOR VIDEO”. In Proceedings of 2010 IEEE 17th
International Conference on Image Processing, September 2010.

[4] Z. Liu, A. Y. Elezzabi, and V. Zhao. ”Maximum Frame Rate Video Acqui-
sition Using Adaptive Compressed Sensing”. IEEE TRANSACTIONS ON
CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 21(11), Novem-
ber 2011.

27

