
0 

 

 

  

      

High Performance Computing and Networking Lab 

Center for Language Engineering 

Al-Khawarizmi Institute Of Computer Science, 

University Of Engineering and Technology, Lahore 

         

                            ہمکنار پاکستان
Urdu Search Engine 

This document gives detailed description of 

developments that were made during the second 

milestone of this project. Key highlights are 

working prototypes of filtering, indexing and 

query response system. We have also developed 

a prototype for crawled data, which gave us 

inside knowledge for developing and managing 

our own cluster. 



Table of Contents 

1. Introduction ................................................................................................................................... 1 

2. Urdu Search Engine ...................................................................................................................... 2 

3. Cloud Infrastructure ...................................................................................................................... 4 

3.1 Components .............................................................................................................................. 4 

3.1.1 Infrastructure using Amazon Web Services (AWS) ......................................................... 4 

3.1.2 Information Storage Using Apache’s HDFS ..................................................................... 5 

3.2 Implementation Methodology ................................................................................................... 7 

3.2.1 Crawled Data..................................................................................................................... 8 

3.2.2 Elastic Map Reduce (EMR) .............................................................................................. 9 

3.2.3 Extraction of .pk domains ............................................................................................... 10 

3.3 Results ..................................................................................................................................... 12 

3.3.1 MIME Type Vs Frequency ............................................................................................. 12 

3.3.2 Top Second Level Domains ............................................................................................ 13 

3.3.3 Top Hosting Countries .................................................................................................... 13 

4. Information Management ............................................................................................................ 15 

4.1 Architecture of Filtering System ............................................................................................. 15 

4.2 Language ................................................................................................................................. 17 

4.3 Content .................................................................................................................................... 18 

4.4 Age .......................................................................................................................................... 19 

4.5 Size .......................................................................................................................................... 20 

5. Search Management .................................................................................................................... 22 



5.1 Indexing .................................................................................................................................. 23 

5.1.1 Solr - Open source Indexing Solutions ........................................................................... 23 

5.2 Implementation Details ........................................................................................................... 23 

5.2.1 Frontend Infrastructure ................................................................................................... 24 

5.2.2 Internal Working ............................................................................................................. 26 

6. Summary ..................................................................................................................................... 27 

References ............................................................................................................................................ 28 



1 

 

1. Introduction 

In modern era, “search engine” has become the soul entity to provide desired information on just 

entering few relevant keywords. Our knowledge source is shifted from books and newspapers to web, 

mainly due to the fact that search engines give wide variety of relevant information in few seconds.  

Search engines can influence political views and change common perception, as users increasingly rely 

on them to navigate online content [1].  The search becomes more accurate and relevant when search 

engines are developed for a particular language, as majority of the languages are morphologically 

different than the others. Although, in classical language philosophy there is a divide among the linguists 

upon the treatment of the language (for example Chomsky’s vs. Quine’s) but each group acknowledges 

that there do exist unique language specific complexities that need to be catered. Unfortunately, the field 

of Natural Language Processing (NLP) is also less explored in the context of Urdu language. In the light 

of all this, a search engine that searches Urdu content against Urdu queries is not only challenging but 

also an exciting research area. 

This project develops ‘Urdu Search Engine (USE)’ to address the national and linguistic needs, and to 

incubate the much needed expertise in this area of research and development. USE is a practical step to 

encourage not only research on Urdu but it also facilitates a large group of user communities who prefer 

to search and view information in Urdu. It is also an opportunity to investigate Urdu specific challenges in 

general. Text summarization is an active research area, and exploring it from the view of handling the 

complexities of Urdu language will give us an opportunity to contribute in the field besides providing a 

unique feature to a huge segment of the society. USE is developing content filtering which is according to 

our social and moral standards. For example, filtering out adult and inappropriate content, which is freely 

available on web. Modern search engines also overlook the requirements of low-end mobile users. A 

primary reason for this is that in the developed world the penetration of smart gadgets is overwhelming 

and the high-speed Internet services do not raise a need of developing convenient search mechanisms for 

the users of low-end mobile phones. This includes the development of an SMS-based search facility, 

which requires extracting a succinct summary of the search results and send it back to the user via SMS. 

The project is working in three aspects, focusing on high performance distributed computing, content 

search optimization and local content management. Implementing in these three areas is a challenge in 

itself, as they are less explored by our local research community. Modern NLP applications perform 

computations over large corpora. With increasing frequency, NLP applications use the Web as their 

corpus and rely on queries to commercial search engines to support these computations [2] [3] [4] [5]. But 

search engines are designed and optimized to answer people’s queries, not as building blocks for NLP 

applications. As a result, the applications are forced to issue literally millions of queries to search engines, 

which can overload search engines, and limit both the speed and scalability of the applications. In 

response, Google has created the “Google API” to shunt programmatic queries away from Google.com 

and has placed hard quotas on the number of daily queries a program can issue to the API. Other search 

engines have also introduced mechanisms to block programmatic queries, forcing applications to 

introduce “courtesy waits” between queries and to limit the number of queries they issue. Having a 

“private” search engine would enable an NLP application to issue a much larger number of queries 

quickly [6]. 



2 

 

2. Urdu Search Engine  
Search engines are as critical to Internet use as any other part of the network infrastructure. Search 

engine is a program which searches the entire web and returns results (documents/ webpages) for a 

specific keyword or a query. Typically, search engine uses a program (crawler) to fetch as many 

documents as possible from the web. Another program unit called “indexer” is used to read these fetched 

documents and build an index based on the fetched documents word just like an index of a book. Each 

search engine algorithms use this index to search and return searched documents. They also create or use 

algorithms to return only meaningful results like for ranking or trending results, but their detailed internal 

workings are trade secret. Figure 1 shows the basic working of a search engine [7]. 

USE covers all the essential components of a sophisticated search engine like crawling, data indexing 

and search. Like any conventional search engine a web interface is provided to users for sending query to 

the system and obtaining the relevant results. It will also help out the mobile based users especially low 

end mobile users to send query to the systems using a number and receive information over the mobile 

phone. Urdu Search Engine is comprised of following components: 

 

Figure 1: Generic infrastructure of a search engine 

 Cloud Infrastructure (CI): CI deals with computing infrastructure, crawling web content for 

other teams, running and maintaining search software stack and to provide space for 

development, testing and deployment of the work. It provides a scalable storage and distributed 

computing infrastructure for USE. Incremental web crawling service to improve the seeds so the 

WWW crawling finishes in a desirable time is also included in the responsibilities of CI. 

 Information management (IM): IM Component will be responsible to perform linguistic and 

textual analysis on raw content. IM will deal with policy management, language identification 

and content filtering by using well-defined machine learning algorithms to limit the search to 

Urdu contents only. It will also provide the implementation of tokenization, segmentation and 

text summarization of Urdu content to acquire the word boundaries. 



3 

 

 Search management (SM): SM will deal with collection of documents and building indexes 

which help out in processing the queries in order to provide satisfactory search results to the user. 

This component is responsible for Index prototyping and design to make the web pages useable 

for search. Ranking of the web pages depending upon the ranking policy and conversion of user 

query into meaningful piece of information by using Query Response system is part of SI. 

Figure 2 shows the complete infrastructure of USE with color coded blocks. The green blocks shows the 

operations done by CI, grey are the component blocks of IM and pink is the block description of SM. The 

data that is crawled and managed by CI is passed on to MI for analysis and language processing. 

Whenever there is a query received by the SM is fetches indexed files, filters and rank the results 

according to polices and present to the user. 

 

Figure 2: High level infrastructure of USE 



4 

 

3. Cloud Infrastructure 

The computation infrastructure and storage requirements of this project are quite intense. Moreover, 

constant power and network failures are prevalent issues. Keeping in view all these limitations, a hybrid 

plan has been formed, which also minimizes the cost of the project. Instead of building entire CI 

infrastructure in-house, services of AWS were used. The required/extracted data was fetched out of AWS 

and stored in-house for use. This concurrent use of AWS cloud and local compute facility is referred as 

‘hybrid’ approach. This hybrid plan is optimal in terms of cost. The first step CI did was to setup Amazon 

Web Services (AWS). We looked into the Common Crawl data available on AWS for the month of 

October 2016. This gave us a preliminary insight about how to crawl data and prototype it before making 

a full fledge cluster and maintaining it locally. For information storage a distributed file system is 

designed to hold a large amount of data and provide access to this data to many clients distributed across 

a network.  

There are a number of distributed file systems that solve this problem in different ways. We have 

chosen Apache’s ‘Hadoop Distributed File System’ (HDFS) as our primary source of information storage 

and retrieval. Few high speed ‘Network Attached Storage’ (NAS) boxes will complement our in-house 

storage needs.  

3.1 Components  

Further we briefly described the basic components used in our Implementation until now. 

3.1.1 Infrastructure using Amazon Web Services (AWS) 

Amazon Web Services (AWS) is a collection of remote computing services, which together make up 

a cloud computing environment. The service that is going to be predominantly utilized on this project is 

Amazon Elastic Compute Cloud (EC2). EC2 allows scalable deployment of applications by providing a 

web service through which a user can boot an ‘Amazon Machine Image’ to create a virtual machine, 

which Amazon calls an "instance", containing any software desired. A user can create, launch, and 

terminate server instances as needed, paying by the hour for active servers, hence the term "elastic". EC2 

provides users with control over the geographical location of instances that allow latency optimization 

and high levels of redundancy. Amazon EC2 provides resizable compute capacity on demand. The 

processing, algorithms, crawling, content caching, corpus creation, model and index production, system 

maintenance, and end user interfaces can all be hosted on Amazon EC2. 

Amazon EC2’s simple web service interface allows users to obtain and configure capacity with 

minimal friction. It provides users with complete control of the computing resources and lets them run on 

Amazon’s proven computing environment. Amazon EC2 reduces the time required to obtain and boot 

new server instances to minutes, allowing users to quickly scale capacity, both up and down, as their 

computing requirements change. Amazon EC2 changes the economics of computing by allowing users to 

pay only for capacity that they actually use. Amazon EC2 provides developers the tools to build failure 

resilient applications and isolate themselves from common failure scenarios.  



5 

 

EC2 provides users with control over the geographical location of instances that allows for latency 

optimization and high levels of redundancy. For example, to minimize downtime, a user can set up server 

instances in multiple zones that are insulated from each other for most causes of failure such that one 

backs up the other. AWS is the pioneer in cloud computing IaaS model and the requirements of the 

project demand services similar to the ones offered by AWS. Therefore AWS was an obvious choice. 

3.1.2 Information Storage Using Apache’s HDFS 

The HDFS is designed to store very large data sets reliably, and to stream those data sets at high 

bandwidth to user applications. In a large cluster, thousands of servers both host directly attached storage 

and execute user application tasks. By distributing storage and computation across many servers, the 

resource can grow with demand economically at every size [8]. Following is a brief description of the 

HDFS system. 

HDFS has master/slave architecture as shown in Figure 3. An HDFS cluster consists of a single 

NameNode, a master server that manages the file system namespace and regulates access to files by 

clients. In addition, there are a number of DataNodes, usually one per node in the cluster, which manage 

storage attached to the nodes that they run on. HDFS exposes a file system namespace and allows user 

data to be stored in files. Internally, a file is split into one or more blocks and these blocks are stored in a 

set of DataNodes. The NameNode executes file system namespace operations like opening, closing, and 

renaming files and directories. It also determines the mapping of blocks to DataNodes. The DataNodes 

are responsible for serving read and write requests from the file system’s clients. The DataNodes also 

perform block creation, deletion, and replication upon instruction from the Named Node. HDFS is 

designed to reliably store very large files across machines in a large cluster. It stores each file as a 

sequence of blocks; all blocks in a file except the last block are the same size. The blocks of a file 

 

Figure 3: Internal architecture of Apache's HDFS 



6 

 

are replicated for fault tolerance. The block size and replication factor are configurable per file. An 

application can specify the number of replicas of a file. The replication factor can be specified at file 

creation time and can be changed later. Files in HDFS are write-once and have strictly one writer at any 

time. The NameNode makes all decisions regarding replication of blocks. It periodically receives a 

Heartbeat and a Blockreport from each of the DataNodes in the cluster. Receipt of a Heartbeat implies 

that the DataNode is functioning properly. A Block report contains a list of all blocks on a DataNode as 

depicted in Figure 4.  

 

Figure 4: Detailed view of Hadoop Distributed File System 

MapReduce 

MapReduce is a programming model and an associated implementation for processing and generating 

large datasets that is amenable to a broad variety of real-world tasks. Users specify the computation in 

terms of a map and a reduce function, and the under-lying runtime system automatically parallelizes the 

computation across large-scale clusters of machines, handles machine failures, and schedules inter-

machine communication to make efficient use of the network and disks as shown in Figure 5. 

Programmers find the system easy to use more than ten thousand distinct MapReduce programs have 

been implemented internally at Google over the past four years, and an average of one hundred thousand 

MapReduce jobs are executed on Google’s clusters every day, processing a total of more than twenty 
petabytes of data per day [9]. 

The computation takes a set of input key/value pairs, and produces a set of output key/value pairs. 

The user of the MapReduce library expresses the computation as two functions: map and reduce. Map, 



7 

 

written by the user, takes an input pair and produces a set of intermediate key/value pairs. The 

MapReduce library groups together all intermediate values associated with the same intermediate key I 

and passes them to the reduce function. The reduce function, also written by the user, accepts an 

intermediate key I and a set of values for that key. It merges these values together to form a possibly 

smaller set of values. Typically just zero or one output value is produced per reduce invocation. The 

intermediate values are supplied to the user’s reduce function via an iterator. This allows us to handle lists 

of values that are too large to fit in memory. 

Many different implementations of the MapReduce interface are possible. The right choice depends 

on the environment. For example, one implementation may be suitable for a small shared-memory 

machine, another for a large NUMA multiprocessor, and yet another for an even larger collection of 

networked machines. Several open source implementations of MapReduce have been developed [10] and 

the applicability of MapReduce to a variety of problem domains has been studied [11]. 

 

Figure 5: Execution overview using MapReduce 

3.2 Implementation Methodology 

In order to analyze the whole web, first step is crawling data from web pages. These web 

pages occupy a large volume of storage (more than 100 TB’s). The analysis on this data requires 

a lot of computational power. The analysis filters out information about the contents of interest, 

in this case Urdu content is our main focus. 

In order to analyze the web data, the entire web has to be crawled. Instead of “crawling” the 

whole web, an openly available crawled dataset provided by Common Crawl [12] could be used. 



8 

 

Common Crawl freely provides the crawled data every month. In order to analyze this data, a 

large number of machines are required. To make the task easy, Amazon provides web services 

for this purpose. Amazon has many online services comprising of virtual machines with desired 

operating systems, storage services and options for creating big clusters for computing big data. 

3.2.1 Crawled Data 

Common Crawl provides free crawled data every month. The data for October 2016 was 

used for the analysis. The data contains more than 3.25 million webpages [13].  Common crawl 

uses sitemaps to improve their seed. The data is provided in different formats. The details of the 

data are as follows: 

 WARC files: These files contain crawler requests as well as the response headers along 

with the actual payload. WARC format is shown below. The snippet in figure 6 shows 

response header and actual payload sample. Response header has several fields of interest 

including IP address, URL, content length and content type [14]. 

 

 

Figure 6: Format of WARC file 

 WAT files: WAT files store computed metadata for the data stored in WARC files. The 

metadata is computed for all three records in WARC file (request, response, and 

payload). The information is stored in WAT files as JSON is shown in figure 7. 



9 

 

 

Figure 7: Format of WAT file 

 WET files: WET files only store plain text (removing any html tags). Plain text of the 

html page is saved immediately after WARC headers as shown in figure 8. 

WARC/1.0 

WARC-Type: conversion 

WARC-Target-URI: http://news.bbc.co.uk/2/hi/africa/3414345.stm 

WARC-Date: 2014-08-02T09:52:13Z 

WARC-Record-ID:  

WARC-Refers-To:  

WARC-Block-Digest: sha1:JROHLCS5SKMBR6XY46WXREW7RXM64EJC 

Content-Type: text/plain 

Content-Length: 6724 

 

BBC NEWS | Africa | Namibia braces for Nujoma exit 

... 

President Sam Nujoma works in very pleasant surroundings in the small but beautiful old State House... 
  

Figure 8: Format of WET file 

The use of WARC file is convenient as the file contained all the information required to carry 

out an in depth analysis. The file includes whole webpage along with all html tags, which is 

necessary to separate various parameters during analysis. Common Crawl corpus for October 

2016 has over 100TB of data. To perform operations on this large volume of information 

requires a well-established infrastructure. 

3.2.2 Elastic Map Reduce (EMR) 

To perform operations on big data amazon provides EMR (Elastic Map Reduce) service. 

EMR service can be accessed from amazon web page [15]. Common crawl data from October 

2016 dataset was used for analysis. The dataset is available on amazon public dataset which can 

be accessed using amazon S3 protocol for free [16]. As the data being processed is huge, the 

EMR job has to process large chunks of data. In order to avoid any memory related issues, 



10 

 

Hadoop was configured on EMR. The output from Hadoop job was stored in S3 buckets. S3 is 

amazon web storage service.  

Amazon EMR job runs on a cluster of EC2 instances. Each instance is a virtual machine 

which is configurable according to requirements. Amazon provides S3 storage for storing any 

input or output data. An EMR job running on EC2 clusters may take quite a long time to 

complete. The usage of resources can be monitored by Amazon Cloud Watch service. The flow 

of job is shown in the figure 9 [17]. 

 

Figure 9: Shows the basic mechanism how EMR Job runs on AWS 

3.2.3 Extraction of .pk domains 

The strategy to obtain Urdu content involved extraction of .pk domain based web pages and 

analyzing the pages for Urdu content. The outlines of this strategy are as follows. 

 Obtain all .pk based websites from common crawl dataset by using Map Reduce strategy. 

 Obtain general information about these webpages, for example number of pages, hosting 

providers, document types and their numbers etc.  

 Analyze these webpages for Urdu content using a language detection tool. 

 Separate the pages rich in Urdu content.  

All the steps above are mandatory to obtain the required results, however the list of webpages 

with .pk domains and their data could be found by common crawl URL index. The index 

provides the name of the WARC file where a website’s data may be stored. It also provides the 



11 

 

total length of that data along with the offset, representing the starting point of the data. This 

way, the need to write custom scripts for isolating .pk web pages from rest of the web could be 

avoided. The interface of common crawl URL index is shown in the figure 10. A list of all .pk 

webpages and corresponding WARC files can be obtained using this tool. The figure 11 shows 

the input query to obtain all domain names containing .pk. A portion of the list of .pk webpages 

after executing this query is shown in figure 12. The files are accessed and the required content is 

fetched using offset and length of that content using the python script, which can found in code 

attached. 

 

Figure 10: Webpage displaying interface for using Common Crawl Index 

 

Figure 11: Query to obtain list of .pk domains stored in Common Crawl data for October 2016. 



12 

 

 

Figure 12: A list of .pk domains obtained after executing the query. 

3.3 Results 

The total number of .pk webpages found, using the method above were almost 1.2 million. 

About 0.6 million web pages were selected for our analysis. A series of operations were 

performed on the data obtained from common crawl corpus. Results corresponding to various 

factors were derived and analyzed further. 

The analysis showed that only 0.01% of the web is occupied by .pk domains. Most of the .pk 

usage is dominated by .com and .edu second level domains. The results show that html images 

and pdf are most abundant content types on the .pk pages. Most of the .pk pages are hosted on 

US servers and most of the content hosted on them is English.   

3.3.1 MIME Type Vs Frequency 

Table 1 is showing the types of document and their frequencies. The result shows that among 

1119687 analyzed webpages, 1115658 were html content which dominates the document type 

overall. Images are second most used content among .pk domains. The reason is evident, as most 

of the content in a website is html, it has to be on top, images and PDFs are also abundant in 

number. 



13 

 

Table 1: Displaying document type along with number of its occurrences in 0.6 million documents of .pk domains. 

 

3.3.2 Top Second Level Domains 

Among .pk webpages, a number of second level domains were found. A list of the domains and their 

number is given below. Table 2 shows top second level domains for 2013, 2015 and 2016 for .pk domain. 

The total number of domains seems to grow which is consistent with the fact that every year number of 

internet users and websites grow. However, in 2016 data, .incom dominated .com by quite a big margin. 

The reason is .incom is a free hosting service which provides domain names with its second level domain. 

Many Pakistani users in 2016 use this free service to host their website. Excluding this second level 

domain leaves .com on top and .edu as runner up. 

3.3.3 Top Hosting Countries 

The header segment of each entry in the WARC file contains an IP address field. Based on 

the IP address the location of the server serving the page can be determined. MaxMind [18] 

provides IP to Geo resolving services. MaxMind provides databases for location look up. 

GeoLite is MaxMind’s free set of databases for location look up. Using MaxMind’s databases 

revealed following information. Table 3 shows the most used servers for hosting .pk websites are 



14 

 

those of US. The reason for US being on top and not Pakistan may be the fact that US web 

hosting companies provide better interface and cost effective solutions. Thus the users tend to 

use easy solutions. 

Table 2: Comparison of information regarding second level domains from common crawl data for 2013, 2015, 2016. 

 

 

Table 3: Number of documents arranged with respect to Country. The table depicts US based servers to host most of 

the .pk pages than Pakistan based servers. 

  



15 

 

4. Information Management 

The collection of raw content retrieved after crawling is ineffective without linguistic and 

text analysis. To use this content as meaningful information there is need to perform language 

processing on the content that includes language & content identification, segmentation of the 

content into words and conversion of the words into their base forms. Figure 13 shows the 

structure of a preprocessor that will be responsible for converting webpage content into a form 

that can be processed by individual filters. The Normalizer will strip the input of all punctuation, 

digits, diacritics, and special characters. The “Content Segmenter” will then split the webpage 

into sentences, and the Sentence Tokenizer will split sentences into individual words. Finally, the 

“Stop word Remover” may be used as required to eliminate Urdu “stopwords” from the input. 

Preprocessor

Normalizer

Crawled webpages Preprocessed webpages

Content 

Segmenter

Sentence 

Tokenizer

Punctuation, 

digits, diacritics, 

special 

characters

Stopword 

Remover
Urdu Stopwords

 

Figure 13:  Internals of Preprocessor. 

4.1 Architecture of Filtering System 

As first step we implemented a prototype of working filtering system. The filtering system of 

the Urdu Search Engine is responsible for calculating a number of heuristics from webpages in 

order to decide whether to index them or not, or how to rank them when returning search results. 

This information would allow a better user experience by ensuring that emphasis is laid on 

relevant, up-to-date, and appropriate material. 

The overall architecture of the filtering system is given in Figure 14. The filtering system is 

itself composed of four subsystems, each of which extracts a certain kind of information from 



16 

 

crawled webpages. Our focus is on a webpage’s language, content, age, and size. The working of 

each of these filters is described in detail in the sections that follow. 

Additionally, each of these filters will be composed of two separate components: the policy 

and the filter itself. The filter will be responsible for processing a webpage, extracting the 

required information from it, and representing this information on a continuous scale from 0 to 1. 

This scale may take up different meanings depending on the filter in question: for language, it 

will represent the proportion of Urdu in a webpage, while for content; it will represent the 

severity of profanity in a webpage. In the age and size filters, this scale will represent a mapping 

from the age and size onto the webpage’s significance, respectively.  

The policy component of the filters will be responsible for setting a threshold between the 

extremes of 0 and 1 which webpages must satisfy in each of the categories in order to make into 

the search engine index or rank highly in users’ search results. One might set the policy to allow 

only webpages with a certain amount of Urdu and under a certain threshold for profanity. An age 

threshold may be used to rank more recent, ‘fresh’ webpages higher than older matches for the 

same query. Similarly, one may use the size filter to push light-weight, faster-loading webpages 

higher up in search results when the engine is queried from a mobile device (since mobile data 

can be expensive). The relationship between the two components of each filter is shown in the 

figure 14, wherein the policy defines the thresholds that a given webpage must satisfy in order 

for the filter to let it through. 

Filtering System

Language Content

Age Size

Crawled webpages Webpages to be indexed

 

Figure 14 System Architecture 



17 

 

Policy

Filter

Crawled webpages Filtered webpages

Control

 

Figure 15: Policy 

4.2 Language 

The language filter is responsible for determining whether a particular webpage contains 

Urdu, and if it does, estimate its proportion in it. This is important since the Urdu Search Engine 

is primarily focused on crawling and indexing webpages with Urdu content and when doing 

open-ended crawling, it is important to know which webpages to keep and which to discard. A 

language filter will be able to sift through crawled webpages in order to keep for indexing only 

those that contain a substantial proportion of Urdu in them. 

The design of the language filter is outlined in Figure 15. The Preprocessor cleans, 

normalizes, and tokenizes the webpage’s content into an array of words. This is to decompose a 

single string containing the entire content into individual words we can then classify as Urdu or 

non-Urdu. The Preprocessor’s output is passed to an Urdu Verifier which is responsible for 

determining whether there exists any Urdu text in the webpage at all. 

This is done in two steps. First, the content is checked for the existence of any Arabic 

Unicode characters. Since all Urdu characters are a subset of the Arabic Unicode character set, 

any webpage that contains Urdu text must contain characters from within this range. If no Arabic 

Unicode characters are found, the webpage can be dropped right there and then. If, however, it 

does contain Arabic Unicode characters, then it must be checked for the presence of Urdu in 

particular, since Arabic Unicode characters are used for writing numerous other languages as 

well. This check is performed by searching the webpage content for any Urdu stopwords. A 

language’s stopwords are those words that are especially common in its discourse. Our system 



18 

 

matches the input against a precompiled list of Urdu stopwords. If any are found in the webpage, 

then it can be looked at in more detail to estimate the proportion of Urdu in it. 

The Segment Extractor and Proportion Estimator make up the final parts of the language 

filter. They use a language model trained on a large Urdu corpus in order to classify Urdu words. 

Once all words have been classified, the proportion of Urdu in the webpage is then calculated 

and returned as a value in the range 0 to 1. This value is then checked against the policy 

thresholds in order to determine if the webpage in question should make it through the filter or 

not. 

 

Language

Preprocessor

Crawled webpages
Urdu content

per webpage

Segment 

Extractor

Policy

Filtered webpages

Urdu 

Stopwords

Urdu 

Language 

Model

Urdu Verifier

Proportion 

Estimator

 

Figure 16 Language 

 

4.3 Content 

Content filtering is an important part of the crawling and indexing process since we do not 

wish to index and make available to users content whose language is deemed inappropriate or 

offensive. After the Preprocessor has cleaned, normalized and tokenized the content into words, 

a Profane Content Marker will look for any obscene words among them. This will be done using 

a precompiled profanity dictionary. The dictionary will contain a list of common Urdu swear 

words and phrases, and their respective severity scores on a graded scale. If no matches are 

found, then the content is deemed unobjectionable and is passed through the filter. If, however, 

profanity is found in the content, then it must be evaluated in order to determine its severity. This 

is important since not all swear words or phrases are equally bad. Additionally, combinations of 



19 

 

supposedly mild profanity can yield much stronger phrases. A Sentence Profanity Accumulator 

will be used in this case to measure this compound effect over a window of words. The output of 

this Accumulator will be used by the Document Profanity Scorer to assign the webpage an 

overall score taking into the account the frequency, severity, and proximity of any profanity 

found. This overall score must then satisfy the thresholds set by the policy in order to pass 

through the filter. 

 

Content

Preprocessor

Crawled webpages

Profanity 

Severity 

Dictionary

Sentence 

Profanity 

Accumulator

Profane content 

marker

Policy

Profanity score

per webpage
Filtered webpages

Document 

Profanity Scorer

 

Figure 17: Content 

4.4 Age 

The age of a webpage plays an important part in determining its relevance when displaying 

search results. The date a webpage has been created or altered can be extracted from its date of 

last modification, meta-data that is commonly included in HTML webpages. The time elapsed 

between the day of the webpage’s creation/modification and the current day denotes its age. 

Young webpage, i.e. those that have been created or modified only a little while before being 

crawled and indexed, are likely to be more up-to-date and informative to a user than old ones. 

For this purpose, an age filter will extract the age of webpage and assign it a significance ranging 

from 0 to 1.  

The age-significance mapping between these two extremes will be nonlinear and model an 

inverse relation between age and significance. This means that a more recent webpage will have 

a higher significance than an older one. It also means that, due to the curved nature of the 

mapping function, a difference in age between two old webpages will yield a smaller difference 



20 

 

in significance than the same difference in age between two younger webpages. The policy can 

be set to allow only pages with a high significance, or use the significance as an additional 

heuristic when ranking search results. 

4.5 Size 

The total size on disk of a webpage can also be used as a factor in determining a page’s 

significance and assign it a significance ranging from 0 to 1. The size-significance mapping 

between these two extremes will be nonlinear, as is the case in the age filter. Here, however, we 

expect the function to follow a kind of logarithmic curve, giving larger webpages a higher 

significance than smaller ones. Smaller webpages may contain little or primarily textual content, 

while bigger ones may contain rich media such as image, audio, or video. A webpage’s size can 

thus be used as a marker for ranking search results when the search engine is queried from a 

mobile device. 

 

 

Age

Webpage age 

extractor

Crawled webpages
Significance

per webpageAge to 

significance 

mapper
Policy

Filtered webpages

Age-significance 

mapping

 

Figure 18: Age 



21 

 

Size

Crawled webpages

Policy

Significance

per webpage
Filtered webpages

Webpage size 

extractor

Size to 

significance 

mapper

Size-significance 

mapping

 

Figure 19: Size 

  



22 

 

5. Search Management 

In order to build an effective search engine a collection of documents and vocabulary are the key 

elements. Crawlers enable us to build a collection of documents whereas the vocabulary is developed 

using several techniques that we have seen in Information Management. The collection and vocabulary 

are then used to build an index, which plays a vital role in searching the right information to fulfill a user 

need. In this section we shall detail indexing and ranking techniques that are extremely important to 

evaluate a search query. Figure 20 gives an overview of search management in USE. 

The indexer is one of the critical components, which takes its input from multiple sources and it is 

used to server all kinds of queries. Crawled data is stored in HDFS and indexer uses the file paths in 

HDFS to be provided later against a keyword. The important decisions that which keywords needs to be 

indexed comes from the search policy management and keeps on changing over time depending factors 

like user search preferences. When a query comes in, the query manager processes the query and fetches 

raw results from the indexer and then ranks them before serving to a specific platform like ordinary 

browser, cell phone or SMS. 

 

Figure 20: Search Management 



23 

 

5.1 Indexing 

The second important component of a search engine after crawler is the Indexer. A crawler fetches 

the web pages, and the indexer turns them into the inverted index which becomes usable for the search. 

“An inverted index is able to do many accesses in O(1) time at a price of significantly longer time (O(n)) 

to do an update. Index construction time is longer as well, but query time is generally faster than with a 

binary tree. Since index construction is an off-line process, shorter query processing times at the expense 

of lengthier index construction times is an appropriate tradeoff. Finally, inverted index storage structures 

can exceed the storage demands of the document collection itself. However, for many systems, the 

inverted index can be compressed to around ten percent of the original document collection. Search 

engine developers are happy to trade index construction time and storage for query efficiency. An 

inverted index is an optimized structure that is built primarily for retrieval, with update being only a 

secondary consideration. The basic structure inverts the text so that instead of the view obtained from 

scanning documents where a document is found and then its terms are seen (think of a list of documents 

each pointing to a list of terms it contains), an index is built that maps terms to documents (pretty much 

like the index found in the back of this book that maps terms to page numbers). Instead of listing each 

document once (and each term repeated for each document that contains the term), an inverted index lists 

each term in the collection only once and then shows a list of all the documents that contain the given 

term. Each document identifier is repeated for each term that is found in the document.  

5.1.1 Solr - Open source Indexing Solutions 

‘Solr’ is a Lucene based indexing and search solution, which is getting traction in the market place 

due to its quality and speed. Solr is a Java servlet based web application. Currently it is a sub-project of 

Apache’s Lucene project. It has capabilities like full-text search, hit highlighting, search result automatic 

clustering and user level search filters and handling of rich documents like PDF and MS Word. 

Additionally it is highly scalable as search query load increases. It achieves this scalability using sharing 

of search data on multiple machines and index replication. 

Like any other open-source project, Solr uses functionality of number of other projects like Carrots2 

for clustering and different component of Lucene project (e.g. Tika). The major challenges for our team 

will be to tailor the indexing system such that, it works effectively with the Urdu language based content. 

Additionally we will need to tweak clustering and filtering techniques for Urdu language content. 

5.2 Implementation Details 

Currently we have developed a minimal prototype of Query response system as shown in Figure 21. 

Frontend of Urdu Search Engine is made to ease Urdu content search. Front end is implemented using 

HTML, PHP, JavaScript, jQuery and CSS. On user query, frontend code sends a request to Apache Solr 

and wait for Apache Solr response. On Apache Solr response, search results are formatted and shown to 

the user. 

 



24 

 

 

Figure 21: Frontend Implementation 

5.2.1 Frontend Infrastructure  

We adapted an Ajax-Solr project [19] that loosely follows Model-view-controller (MVC) 

pattern as shown in figure 22. MVC is a software design pattern for implementing user interfaces 

on computers. It divides a given software application into three interconnected parts, so as to 

separate internal representations of information from the ways that information is presented to or 

accepted from the user. 

 

Figure 22: MVC model 



25 

 

Model: The model directly manages the data, logic, and rules of the application. A model 

stores data that is retrieved according to commands from the controller and displayed in the 

view. ParameterStore stores the Solr parameters i.e. the state of the application. 

View: A view can be any output representation of information, such as a chart or a diagram. 

Multiple views of the same information are possible, such as a bar chart for management and a 

tabular view for accountants. A view generates new output to the user based on changes in the 

model. Widgets are the views to render different parts of the interface. Solr’s response usually 

consists of hundreds or thousands of documents. Pagination of result set is necessary for search 

result organization and navigation. Functionality of pagination depends on the number of 

documents returned by Apache Solr and the URL of different pages of same query results. 

js/lib/ajaxsolr/widgets/jquery/Pager.js file is used for pagination. Various widgets are used to 

query Solr, prepare response, and display results in the web browser. Widgets are located in 

js/lib/nutchsolr/widgets and important widgets are described in table 4. 

Controller: It accepts input and converts it to commands for the model or view. A controller 

can send commands to the model to update the model's state (e.g., editing a document). It can 

also send commands to its associated view to change the view's presentation of the model (e.g., 

scrolling through a document). Using ParameterStore, Manager sends requests to Solr and 

delegates responses to widgets (for rendering). Manager is the main component used to control 

all other widgets. In USE frontend code, we are using 

js/lib/ajaxsolr/managers/Manager.jquery.js to prepare final URL submitted to Solr e.g. 

http://xx.xx.xx.xx:8900/solr/collection1/select?q=english&wt=json&indent=true. Core files are 

located in js/lib/ajaxsolr/core. Important files are described in table 5. 

Table 4: Widgets used during implementation 

File Name Description 

NResultWidget.js Used to handle Apache Solr response. Formatting of returned docs depends 

on group value. 

NSearchWidget.js Used to prepare query before submission to Apache Solr. 

 

Table 5: Core files 

File Name  Description  

Core.js Base class for all other classes. 

AbstractManager.js Defines various methods and variables used all over the directory. 

Manager is the main component for that handles everything. 

Parameter.js Represents a Solr parameter. 

ParameterStore.js Stores Solr parameters and describes their usage. 

AbstractWidget.js Base class for all widgets. Defines parameters for extension. 

 

http://xx.xx.xx.xx:8900/solr/collection1/select?q=english&wt=json&indent=true


26 

 

5.2.2 Internal Working  

AJAX Solr is JavaScript framework-agnostic; it only requires an AJAX implementation to 

send requests to Solr. In this example, we use jQuery. In AJAX Solr, the Manager sends these 

requests, and passes the responses to each widget for handling. JavaScript files required are 

Core.js, AbstractManager.js, Manager.jquery.js. 

AJAX Solr stores Apache Solr parameters in a ParameterStore. JavaScript files for the 

ParameterStore are Parameter.js, ParameterStore.js. Next comes the Result Widget to show 

results. JavaScript files for this purpose are AbstractWidget.js, NResultWidget.js. Next comes 

the Pager Widget for pagination. JavaScript file for this purpose is Pager.js. 

Every widget takes a required id, to identify the widget, and an optional target. The target is 

usually the CSS selector for the HTML element that the widget updates after each Solr request. 

After Request, each widget which runs after the Manager receives the Solr response. The 

Manager stores the response in “manager.response” (which the widgets may access through this 

“manager.response”). 

The Manager’s init method is typically called, to initialize AJAX Solr. This method calls the 

init methods of the ParameterStore and widgets. Nutch.js which is ajax/js directory contains Solr 

URL and various widgets structures. 

  



27 

 

6. Summary 

Research indicates that indigenously developed search engines [20] [21] are more successful 

in the communities accessing localized content, primarily because they offer language and 

culture specific services. For example, Google only has 8%, 22% and 31% share in search 

market in South Korea, China and Japan respectively, till 2012, which is considerably smaller 

share than the search engines developed locally. As the availability and usage of online content 

in local language increases, it is becoming essential to provide efficient access to relevant 

content for Pakistani users through electronic devices including low end mobile phones. This 

project is developing ‘Urdu Search Engine’ to address the national and linguistic needs, and to 

incubate the much needed expertise in this area of research and development. The project is 

working in three aspects, focusing on high performance distributed computing, content search 

optimization and local content management.  

The report describes the implementation details of the preliminary developments we have 

done in our 2
nd

 deliverable. As the work has been clearly divided between three teams, each team 

has done its assigned task in prototype building phase. CI team has prototyped and analyzed the 

Common Crawl data. The analysis showed that the .pk domains which makes up 0.01% 

webpages, is dominated by the .com and .edu second level domains. Majority of the content on 

these sites consists of html images and pdf. Our IM team has implemented a prototype for 

filtering system which is based on linguistic data. As for the front-end of our web interface, our 

SM team has created a prototype query response system. This prototype system takes query from 

the user and searches the query in indexed data and return appropriate search results to the user.  

Next deliverable will focus on development of crawler and more linguistically challenging 

tasks like Urdu text summarization. We will also look more closely in the design and 

implementation of other search engines so we would have better understanding in designing and 

development process.  

  



28 

 

References 

[1] Cafarella, M. and Cutting, D. Building Nutch: Open Source Search in ACM Queue, 2004, 2.  

[2] P. D. Turney. Mining the Web for Synonyms: PMI-IR versus LSA on TOEFL. In Proceedings of the 

Twelfth European Conference on Machine Learning, 2001. 

[3] O. Etzioni, M. Cafarella, D. Downey, A.-M. Popescu, T. Shaked, S. Soderland, D. S. Weld, and A. 

Yates. Web-scale Information Extraction in KnowItAll. In Proceedings of the 13th International World-

Wide Web Conference, 2004. 

[4] O. Etzioni, M. Cafarella, D. Downey, A.-M. Popescu, T. Shaked, S. Soderland, D. S. Weld, and A. 

Yates.Unsupervised Named-Entity Extraction from the Web: An Experimental Study. Artificial 

Intelligence, 2005. 

[5] E. Brill, J. Lin, M. Banko, S. T. Dumais, and A. Y. Ng. Data-Intensive Question Answering. In TREC 

2001 Proceedings, 2001. 

[6] Michael J. Cafarella, Oren Etzioni A Search Engine for Natural Language Applications. Proceedings 

of the 14th International World Wide Web Conference (WWW 2005). 

[7] [Online] Available: http://www.widetutorials.com/seo-search-engine-optimization-for-begineers/ 

[8] Shvachko, K.; HairongKuang; Radia, S.; Chansler, R.; , "The Hadoop Distributed File System," Mass 

Storage Systems and Technologies (MSST), 2010 IEEE 26th Symposium on , vol., no., pp.1-10, 3-7 May 

2010. 

[9] J. Dean, S. Ghemawat, “MapReduce: Simplified Data Processing on Large Clusters,” In Proc. of the 

6th Symposium on Operating Systems Design and Implementation, San Francisco CA, Dec. 2004. 

[10] Hadoop: Open source implementation of MapReduce. [Online]. Available: http://lucene. 

apache.org/hadoop/. 

[11] Chu, C.-T., Kim, S. K., Lin, Y. A., Yu, Y., Bradski, G., Ng, A., and Olukotun, K. 2006.Map-Reduce 

for machine learning on multicore. In Proceedings of Neural Information Processing Systems 

Conference(NIPS). Vancouver, Canada. 

[12] "Common Crawl," [Online]. Available: http://commoncrawl.org/. 

[13] "Common Crawl October 2016 Corpus," [Online]. Available: 

http://commoncrawl.org/2016/11/october-2016-crawl-archive-now-available/. 

[14] "Common Crawl Files Format," [Online]. Available: http://commoncrawl.org/the-data/get-started/. 

[15] "Amazon EMR," [Online]. Available: https://aws.amazon.com/emr/. 

[16] "List of datasets," [Online]. Available: http://commoncrawl.org/the-data/get-started/. 

http://commoncrawl.org/


29 

 

[17] "AWS EMR," [Online]. Available: 

http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-what-is-emr.html. 

[18] "Maxmind Homepage," [Online]. Available: https://www.maxmind.com/en/home. 

[19] “Ajax-Solr” [Online]. Available: https://github.com/evolvingweb/ajax-solr/wiki/reuters-tutorial 

[20] [Online]. Available: http://koreacrunch.com/archive/daum-gains-20-percent-share-in-search-market 

[21] [Online]. Available: http://news.ichinastock.com/2011/10/baidu-78-google-18-in-chinas-search-

enginemarket-in-q3/ 

 

https://www.maxmind.com/en/home
https://github.com/evolvingweb/ajax-solr/wiki/reuters-tutorial

	1. Introduction
	2. Urdu Search Engine
	3. Cloud Infrastructure
	3.1 Components
	3.1.1 Infrastructure using Amazon Web Services (AWS)
	3.1.2 Information Storage Using Apache’s HDFS

	3.2 Implementation Methodology
	3.2.1 Crawled Data
	3.2.2 Elastic Map Reduce (EMR)
	3.2.3 Extraction of .pk domains

	3.3 Results
	3.3.1 MIME Type Vs Frequency
	3.3.2 Top Second Level Domains
	3.3.3 Top Hosting Countries


	4. Information Management
	4.1 Architecture of Filtering System
	4.2 Language
	4.3 Content
	4.4 Age
	4.5 Size

	5. Search Management
	5.1 Indexing
	5.1.1 Solr - Open source Indexing Solutions

	5.2 Implementation Details
	5.2.1 Frontend Infrastructure
	5.2.2 Internal Working


	6. Summary
	References

