Development of Type-2
Hypervisor for MIPS64 Based

Systems

May 1

2015

[9th Deliverable]

This document is version 8 of first report and includes the
implementation details of current deliverable of “Development
of Type 2 Hypervisor for MIPS64 based Systems” project,
funded by National ICT R & D Fund Pakistan. The report starts
with brief description of project objectives, technical details of
our approach, challenges and their solutions. Complete
description of testing infrastructure, test cases and test results
are discussed later on. The report concludes with the impact of

current deliverable on the overall project progress.

Test Cases

Result Report

/ National ICT

"%/ R&.D Fund

High Performance Computing and Networking Laboratory HPCNL

Al-Khwarizmi Institute of Computer Science, University of Engineering and Technology Lahore Pakistan

TABLE OF CONTENTS

1
2
3

L o] [TS od o o o SRRSO 1
L T Y=Y I T o o TSRS 2
IMPIEMENTATION SEFATEGIES ... eeeiieieerteet ettt sttt et ettt s b et s beeheeae et et e sb et e sbeebeebeeneenbeneantas 3
3.1 Instruction Level EXeCULION MOGEL...........ccciniiieiiieicieec et 3
3.2 Block Level EXECULION MOTEL.........c.ooiiieiiriiciiieiercce et 4
SYSTEM DBVEIOPIMENT. ...ttt ettt b e s bt bt bt at et e besbeebesbeebe e st et e be st e nbesbesbeeaeensenbenaenbas 5
4.1 Memory Management UNIt (IMIMU) ..ottt sae st sae e sse e ensessennas 5
411 GVAT0 GPA TIraNSIAtION....c..civiiieiiricieirie ettt sttt es 7
412 GPATO HVA TFanSIAtiIoN.....c.coeiriieiieeesereet ettt et ettt st 7
413 PAgE TADIE . ettt b ettt b e bbb 7
4.1.4 Translation Look-aside BUFfEr (TLB)ccccoieiiieierie ettt sttt 8
415 BUGS FIXE N TLB ...ttt s b e bttt et e e e besbesbesbe e bt et e e e b e 8
416 Cavium Segment IMPIEMENTALIONcoeiririeireeererte ettt et bbb 9
4.2 MIPS INStruction St TranSIatioN.........cccovueeririeirnieiee ettt 9
4.2.1 Privileged INSTIUCTIONSooueiuiitiieieieietee ettt ettt st s besae et et e e s e et e sbesbe e st e e e e e neabas 10
4.2.2 UNPriVIleged INSTIUCTIONS.c.oiuiiiiirieieiirt ettt 11
4.2.3 Cavium SPECITIC INSIIUCTIONScoverieiieieie ettt et et s teeteebeesa e b e s e tesbeeteessessessessenes 13
424 Branch and JUMP INSTFUCTIONScccuiriiriiiiiieietee sttt ettt st sttt st et b bt e e e e eas 15
4.2.5 Control SNIftiNg INSTIUCTIONSc.couiiiiieiiieie ettt 18
4.2.6 SPECIAl INSEIUCTIONSceveviiiiicteceeeeses ettt e e st et saesresseeseesse s e teseesreeseeneessensenss 19
4.2.7 EXamples Of TranSIAtioN ..ottt ettt s sbe et ee e 19
4.3 SOTEWAIE CACKE ...ttt b et b bbbttt b bt e bt et ebe b e tens 20
Nt R O Tox L= I (0] oo - RS 21
4.3.2 SEArCHING @ BIOCKeiiiiiieieeeete ettt st s sa ettt et bt bt e ae et et e e entas 21
4.3.3 BIOCK RELFIEVAL......cvieeiiiiiieet ettt b bt b et b et 21
B =T o 1 Uot g T=T o A o To] o3RRS 22
4.3.5 BUQgS fiXed IN AQAFESS CACNE.eouiiiiieeeee ettt sttt et s be bttt e e e bas 22
4.4 T4 1=] o T PSR SPP 22
441 CoNUINUOUS TICK TIMEK ...cciriiriiiiereirieieire ettt ettt es 23
442 ON-DEMANT TICK TIMEK .c.viuiitiitiieiitetet ettt ettt 24
4.5 Interrupt and EXception HaNAIiNGccooiriiiiniie e 26

45.1 SIGFPE: Floating point exception RandliNgcccoeveiieieieerieiesire et 28

45.2 SYSCALL: System call RandliNgc.ccooiuiiiiieiciesise ettt s 28
453 TLB and Address error EXception Handlingcoccoeoeverieninieinineneeenceesese e 28
45.4 Modification in EXCeption HaNAIINGcccoeieieieiiiise ettt 29
455 EXIEINAl INTEITUDES. ...ttt ettt ettt b e bt bt at et e e se et s b sbeebe et e e e neetas 29
451 CTRLHC SIGNAl FOr QUESEccuieeieeieieieriesie sttt sttt st seesse e sessestesaesseeseeneensessenss 29
4.6] ST U o] o o] o PP 29
4.6.1 Inter-Core Communication Through ClUccccoiiiiiiiiiiiieeeee et 30
4.7 1O DEVICE IMANAGEIMENT ...ttt ettt ettt ettt et b et b bt b bbbt e bt s b et e bt b et ebesnensenes 32
AT7.1 UART ettt et et et h e bt e b e s e s e s e s b e e s b e e s Rt e bt e et e et e Rt e R e e Rt e R e e resaresanenrees 32
4.7.2 Central INterrupt UNIT (CHU)....co.oiiiiieeeeee ettt sttt et s st 35
WITTUBE DISK ...ttt st ettt et e e st b s bt s he e et eaten b e st e besaesaeeaeentense e ebesaeeneenteneansansentas 37
TESHING INTIASTIUCTUTE ...ttt ettt et e et e b e s b et e s beeteeseesaesse s eteseeatesseensassessentes 38
6.1 TTESE CASES. ...ttt bbb b e b e e r et n e e re s 39
6.1.1 MAtChing SYSTEM STALESceeuiitiieiietiieet ettt ettt b bbbt b s 39
6.1.2 EXECULION PAN .c.ooviiiiiieec ettt 39
6.1.3 Comparing CoNS0IE OULPULcouiiiiie ettt sttt ettt b bbbt e e e e e be e 40
B.1.4 PrOQgIESS «.etetiitieitetet ettt ettt s bt sttt b e b e h bbb bR Rt a et besa e r e Rt eae et e erenae s 40
6.2 TeStiNG With SIMP SUPPOITceeiieeieeeseeee ettt st a et e s et e saeeteeseeneensesensenes 40
6.3 Booting with customized minimal initramfs file............oocooiii e 40
6.4 Virtual Ethernet Card DETECTIONcceoveereiririeieertcteer ettt et 41
6.5 ASSIGNING @ Valit TP 10 QUEST.......eeeeeiceceeeceetee ettt sttt et sneeresseeneessesensenes 41
TEST RESUILS ...ttt bbbt b et b et et b et b b et b e b e e e bt bbb e 43
7.1 Output of System State MatChiNG TEST.......coviiririieerieeeree et 43
7.2 Output of EXECULION Path TEST.......cce ittt sra e essesnens 44
7.3 OULPUL OF TLB TESTING ...ttt ettt bbbt ettt e e s b e s besbeebe e st et e e e neeneas 44
7.4 OULPUL OF CHU TESTING ...ttt ettt ettt sttt b bbbt be st et ebe b tenes 48
7.5 Output of HYPErVISOF CONSOIEccveviieieciieieeeiee sttt a e e s aestessessaeseessensessenes 50
Performance OPtiMIZALION.........ccociiieieeee ettt ettt s be s te e e s esbe b e besteebeebeessessensenseses 51
8.1 PEIrTOrMEANCE TUNMING c.cviitiietiitereet ettt ettt ettt st ea et st ebe b st e btk s b e st et e st e st et e st eseebesseneebeneeneas 51
8.2 PerformancCe IMPIrOVEMENTS.......c.vcieieieiie ettt ettt restess e e st e s e s e tesaesseeseensensensenes 53
8.2.1 Code Structural ENNANCEMENTc.ccviiieiriiieirieieirietcerteetre ettt seeseseenen 53
8.2.2 HArdWAare PIALTOI.......c.oiuiiiieieeet ettt bttt sttt enes 54

8.3 Potential FUtUre OPLIMIZAtIONccveieriirere sttt ettt st ste e e e s enaeseennas 55

ST 20 A =1 o 1o~ HT] 1T TSRS 55

8.3.2 Compiler like Translation OPtiMIZAtioN...........cccecueiieiiieieeeieiesese ettt e e s seebesaens 55
8.3.3 Data TLB Checking iN EPIHOQUE.......cc.ciririeiriieieie ettt 56
8.3.4 Static Analysis and MOIfICAtIONccciiieieieiercre et te e ss e etesreas 56
8.3.5 Performance Counter MONITOTING.cciiierieieieeere ettt sttt see st st e st ete e 56
8.4 Correctness related DUQP FIXESoviieiiecieeeeee ettt st er e se s e s saees 56

O IMPACE ON PrOJECE PrOQIESS. .. ueiuietieiieieitertistesteeteetteteses e testestesseeseessessessessessesseasessaassessessessessessessesssnssessessessens 57

TABLE OF FIGURES

Figure 1: Multithreaded design Of TYPE-2 NYPEIVISOccueiuiruiiieiiieieeeerte ettt sttt see s 2
Figure 2: Instruction level eXeCUtion MOTELcoueiririeirinieieere ettt sttt s 4
Figure 3: BIOCK 1eVel eXECULION MOELcecueeeieeieieiestee ettt sttt e s e tesbeeaaeseessessesnenas 6
Figure 4: Code Snapshot 0f MtCO'S TraNSIATION.........c.cvverieiririeirerteertert ettt 19
Figure 5: Code Snapshot Of SII's TranSIation..........cc.cceiiiiieeieieree et a et e st te e saesae s esesreas 20
Figure 6: Continuous Tick Timer IMpPIEMENTAtiONcccorirriierrirereere ettt 24
Figure 7: Design Diagram Of TWO TIMEr StrAtEgIES ...cvevvecereeieierirterteseseeeeteseestesteste s e sreesaesaessessestessessassnessessessens 25
Figure 8: Exception handling iN USEI MOTEcoueieiriirieireriei ettt sttt s 27
Figure 9: Code snippet showing the emulation of exception handling...........ccocvevevieiiniccieicee e 28
Figure 10: Multithreaded view of hypervisor and external deViCeS..........ccoerveirereinenncreeeeeee e 30
Figure 11: Execution flow of hypervisor With SMPcooi ittt 31
Figure 12(a): (ciu) Interrupt distribution from external deViCeS t0 COTecceiririeirerirereeereeee e 36
Figure 13: Memory mapping between core and eXternal QEVICES.........ccvcvieeieiierieresisese ettt ste e neae e e 37
Figure 14: RAM disk Implementation in HYPEIVISOTc.coerieiriirieinerieerieee sttt 38
Figure 15: Booting Log of Hypervisor, Showing the Detection of Ethernet..........ccoveveveeeeieveni e 42
Figure 16: GUESE'S NETWOTIK INTEITACES.c.eiviiitirieieierieeet ettt sttt st b e et 42
Figure 17: Output of system state MatChiNG TEST.........cceiiiiiieieeere ettt reesa s e aesreas 43
Figure 18: Output O EXECULION PALN TESTeiitirieietirte ettt st s b e 44
Figure 19: Searching fOr randOm TLBccvcieieieicie sttt s te st re s e s e besbestesseesaesnensessessens 45
Figure 20: TLB entrieS in TLB taDIEc.ooui ittt st 46
Figure 21: Output of TLB and page table tESTING.c.cceiviiiiieieieiee ettt a et b st te e reesn e s esaesrens 47
Figure 22: Output of CIU. No pending interrupt 0N COTE Lc.ovuirieirerieinierieesiereei ettt 48
Figure 23: Output of CIU. No pending interrupt 0N COTE 0c.ecvevieiieiieeseeeetestese e te e teeee s esaesreste e sae s eseaesrens 49

Figure 24: Booting 10g OF NYPEIVISOTc.iiiiiiiriiieiee ettt sttt sttt st s 50

1 PROJECT DESCRIPTION

The main objective of this project is to develop an open source Type-2 hypervisor, for Linux-
based MIPS64 embedded devices. Type-2 means that it is a hosted hypervisor which runs on
MIPS64 based Linux systems as a Linux process. It is intended that the hypervisor will (1)
support installation and execution of un-modified MIPS64 Linux guest(s) on un-modified
MIPS64 Linux host (2) take advantage of virtualization for improved hardware utilization and
performance optimization, by using multiple MIPS cores. Our focus on MIPS is due to the fact
that MIPS based systems are lagging behind in the use of virtualization. One of the reasons is
that many MIPS based processors are used in low end consumer devices like TV set top box,
GPS navigation system and printers. There isn’t a clear cut use case for virtualization here. But
few of the MIPS vendors target higher end embedded devices like network switches and routers,
GSM/LTE base station equipment and MIPS based blade servers. There are clear-cut

virtualization use cases for this higher-end MIPS segment.

The development started on April 1, 2013 and first deliverable was due after 3.5 months i.e.
July 15, 2013. In first deliverable, we built the required infrastructure. The infrastructure printed
guest kernel banner on console at the end of 1st deliverable. Second deliverable was due after 6.5
months of commencement data i.e. October 15, 2013. The milestone in 2nd deliverable was the
dynamic code patching of one sensitive guest instruction with one safer instruction. In 3rd
deliverable, dynamic code patching was augmented by implementing cases where one sensitive
instruction is replaced by more than one instruction. In 4th deliverable, dynamic code patching
was applied on demand. In 5th deliverable, guest kernel booting completes and starts creating
user mode processes. In 6th deliverable, SMP support was added to whole infrastructure and
many performance related bugs were fixed. In 7" deliverable major units like Timer and UART
were added, in code. Exception and interrupt handling mechanism was further developed. Bugs
related to memory implementation and instruction execution were fixed. In 8" deliverable,
virtual disk implementation was added to the infrastructure. Also Ethernet card detection inside
the guest has been done. There were some bug fixes related to timer, TLB and exception
handling mechanism. In 9™ deliverable, a valid IP was assigned to the guest. Timer infrastructure
was changed due to bad performance. Many TLB and UART related bugs were fixed. An error

1

in block fetching mechanism was identified and corrected. Some code structural changes were
done for improving timing performance of hypervisor. Ctrl+C implementation was provided by

hypervisor for killing guest processes.

2 HIGH LEVEL DESIGN

Type-2 hypervisor behaves like an ordinary Linux process that could be scheduled by host
operating system. However, this process has to present a holistic view of virtual hardware for
guest operating system(s) to run on it. Virtual hardware consists of software representations of
CPU cores, memory and peripheral devices. In real hardware, CPU cores and devices work
concurrently and could be considered as processes or threads in software representation.
Multiprocessing requires inter-process communication (IPC) whereas multithreading could be
implemented using the shared address space. Each one has its own pros and cons. We selected
multithreaded design for our hypervisor, as shown in Figure 1. It shows that each core and device
is a separate thread. Central interrupt unit (CIU) is another thread that dispatches pending

interrupts to the cores using mapped memory.

Hypervisor (Linux Process)

Thread, Thread, Thread,
Core, ‘ ‘ Core, ‘ e e o Core, ‘
| CPO,TLB, .. | CPO,TLB,.. | CPO,TLB,..

Core
Communication

Another
Thread |

ClU }(—)* Physical Memory | Data
) / Structure

Device
Communication

Device, ‘ ‘ Device,

Device,,
Thread, ’ \ Thread, , \ Thread, ’

FIGURE 1: Multithreaded design of Type-2 hypervisor

3 IMPLEMENTATION STRATEGIES

Primarily, we have experimentally implemented two different strategies to develop Type-II
hypervisor. Firstly, we implemented an instruction level strategy. This strategy is very simple
and easier to implement but it greatly reduces time efficiency in order to boot a guest OS because
we take trap and then emulate every instruction of the guest OS. It also demands a lot of
programming effort because we have to provide almost all MIPS ISA functionality
implementation in our hypervisor code. Secondly, on the other hand, we also implemented a
block level technique for the execution of guest OS. Because in this strategy, we fetch and
translate a set of instructions at a time instead of a single instruction emulation that’s why it can
be considered a better and faster approach form the previous strategy. We discussed both

implementations as follows.

3.1 INSTRUCTION LEVEL EXECUTION MODEL

It is a very simple mechanism to execute a Guest executable binary on the hypervisor. In this
strategy, when executable guest OS is loaded then we patch all instructions of the guest OS
binary with a trap-call instruction and original instructions are placed into a lookup table (hash-
table). Patching means an instruction is replaced with another instruction, which is caused to
generate a trap during its execution. By doing so, when the control is shifted on the guest
application binary for its execution then we get a signal from the hardware on each instruction
because of its patching. This signal is catch by the signalHandler into the hypervisor code, a
method which is able to catch signal generated by the hardware. Now the control comes back to
our hypervisor code and we can emulate the corresponding instruction into our software based
environment also called a virtual environment. In software based environment, we actually have

a complete soft image of MIPS’s processor.

We have all GP (General Purpose) registers, CPO registers, TLB, CIU and exception
handling mechanism in our software based environment, which is provided by the hypervisor to

the guest operating systems for their execution.

Load Binary

Hash Map
containing original
instructions

Patch all
instructions

Shift Control to
1tinstn. of
binary

Emulate

. Catch Signal
Instruction .

Signal Handler

. Other non-
Privileged Branch/Jump Load/Store vl
Instruction instruction instruction . P)

instruction

FIGURE 2: Instruction level execution model

3.2 BLOCK LEVEL EXECUTION MODEL

This strategy is very much different from the above mentioned strategy because it provides block
level instruction emulation instead of instruction level trap & emulation mechanism. A block
consists of a set of instructions having only one jump/branch instruction as a second last
instruction. In this strategy, we actually fetch a block from a corresponding PC address of the
guest OS loaded binary and then translate this block. Each instruction in the block fetched from
Guest binary is translated into a number of instructions, which are executable on the host
machine. The translated instructions are composed in the same order as the original instructions
are given in the Guest binary block to preserve the correct behavior of instructions. The
translated block is then placed into a Cache-blocks for future reusing purpose so that if the same

block is required again then no need to fetch again and retranslate that block if it’s available in

the Cache-blocks. After block translation we execute it by just placing the starting address of this
block into PC register so that this block can be executed.

During execution a block, the control may come into hypervisor code in case of address
translation from guest virtual address to host virtual address or any other interrupts or for log
files writing purpose. The first block in fetched from the guest virtual reset vector 0OxBFC00000
address and then it is translated and after its translation, it is placed into some fixed location
memory where control is then shifted at that memory location for the execution of translated
block. When whole the execution of translated block is completed, the control comes back into
the hypervisor code for fetching the next block. Now, we first check whether the new required
block is available into Cache-blocks or not. If it is found in the Cache-blocks then it doesn't need
to fetch again and retranslate the required block because the Cache-blocks already have this
translated block into it. The control is just placed on the new block, which has been found into
the Cache-blocks. Alternatively, if required new block doesn't found into the Cache-blocks then
it is fetched, translated and also cached into the Cache-blocks. The Cache-blocks may contain
some fixed number of translated blocks into it when it becomes full then one block from it, is
replaced by new translated block based on some replacement policy. Figure 3 shows the flow

chart of block level execution model of hypervisor.

4 SYSTEM DEVELOPMENT

The whole infrastructure of the hypervisor is divided into modules. The implementation

functional description of each unit is given detail below.

4.1 MEMORY MANAGEMENT UNIT (MMU)

It is the most important unit of a computer system. The purpose of memory management unit is
to translate virtual addresses to physical addresses. For virtual address translation, some rules are
already defined by physical hardware and we implemented these rules in software to provide the
virtualization of MMU used by guest operating system(s). In case of hypervisor, it is used to
translate GVA to HVA. To translate GVA to GPA, we use same method as used by the
hardware. For translation of GPA to HVA, we use hash map to store information of all regions

mapped in host virtual address space.

Start
Hypervisor

i

Initialize
Hypervisor

|

(Executable Fe_tCh a blka ofle
{ instructions

Display
Message

No Block

Translate

Found? Block
Jump to
7777777777777777777777777 Assemt\)bly Code yes
Mgﬁ:‘?sgm] Execute Block
Instructions
L/}\ ________ on Bare Metal
1
e lOn Request Call
(. [WriteLog]
[log &-------- Return to C code
file] |

Translated
Code Cache

Next Block
is in cache?

Finished No
Block

Execution?

Request

Return back from where control came

Yes Handled?

No

FIGURE 3: Block level execution model

Handle Request
(e.g. TLB Checking,
Address Translations, ...)

4.1.1 GVA TO GPA TRANSLATION

MIPS64 architecture supports both 32-bit and 64-bit Addressing modes. In 32-bit addressing
mode, address segment is defined by upper 3 bits (i.e. bits 32-29) of virtual address. If these bits
are 100 then it is ksegO region. It is directly mapped to physical memory. If these bits are 101,
address is from ksegl region and this is also directly mapped to physical memory. In both
previous cases, lower 20 bits represent physical address. For 110, region is ksseg. This is not
directly mapped and we have to search for it in TLB for address translation. For 111, region is
kseg3 which is not directly mapped and we have to search TLB for valid entry to translate the
address. If these bits are Oxx then it is useg. Translation for useg is slightly different. If ERL bit
of status register of CPO is set then useg is directly mapped to physical memory. If ERL bit is not

set then we have to check TLB to get physical address.

In 64-bit addressing mode, address segment is defined by upper 2 bits (i.e. bits 63-62) of
virtual address. If these bits are 10, then this is xkphys region which is directly mapped to
physical memory or 1/0O devices. If 49th bit of virtual address is O then it is memory access and
lower 29 bits represent physical address of memory. If 49th bit is 1 then it is 1/0 address and data
is load/store from respective device. If these bits are 11 then it is xkseg region which isn't
directly mapped and we have to search TLB for valid address translation. For 01, region is xsseg
which is also to be searched in TLB for translation. For 00, region is xuseg. If ERL bit of status
register of CPO is set then it is directly mapped otherwise TLB translation would be required.

4.1.2 GPATO HVA TRANSLATION

All physical memory regions of a machine are mapped in virtual address space of hypervisor.
Once we get the valid translation for GVA, we have to translate that physical address to HVA in
order to access valid data. After getting valid physical address, we found the memory region or
1/0O device to which it belongs. We simply find HVA for required memory region or 1/0 device
using hashmap. Once we get a valid GVA-to-HVA translation, we can simply execute the

respective instruction.

4.1.3 PAGE TABLE
In MIPS no physical page table is provided by hardware and page table is solely managed by

operating system. Hence, there is no need to implement page table.

4.1.4 TRANSLATION LOOK-ASIDE BUFFER (TLB)

TLB is a cache used to speedup virtual address to physical address translation. In case of type 2
hypervisor, TLB translates GVA to HVA. There are four basic TLB functions: probe, read,
write-random and write-index. TLB probe searches for a TLB entry using the value of EntryHi
register of co-processor 0 (CPO0). If valid entry is found, it places index of TLB entry in CPO
index register, otherwise it sets probe bit of index register and consult page table. TLB read gets
value from CPO index register and checks the validity of data at this index. If data is valid, the
components of entry (i.e. entryHi, entryLoO, entryLol and page-mask) are moved to
corresponding CPO registers. Otherwise TLB read raises invalid data exception. TLB write-
random gets index of TLB entry from CPO random register and checks the validity of data at the
index. If entry is dirty, it raises dirty data exception, otherwise it writes corresponding values of
CPO registers (i.e. entryHi, entryLo0, entryLol and page-mask) to the TLB entry at that index.
TLB write-index works same as TLB write-random except that it gets index value from CPO
Index register.

On TLB miss or TLB Mod exception, we jump to the exception handler entry point from

where the kernel determines which kind of exception it is and service the exception.

4.1.5 BUGS FIXEDIN TLB

e TLB Restructuring: TLB structure and searching mechanism is modified to
accommodate changes related to core mask. At boot time when control passes from u-
boot to Linux kernel, core mask is changed which caused TLB exception in previous
implementation and kernel crashes but on such thing happens on actual hardware. Some
debugging revealed that searching mechanism on hypervisor is slightly different from
hardware. In order to search TLB entry, hardware uses pagemask of each entry placed in
TLB instead of using pagemask value of CPO register.

e Reserved Bits for TLB Registers: Some bits for EntryHi, EntryLo and Pagemask
registers are reserved and shouldn’t be changed by the guest operating system. Changing
these bits can cause problem in translation of virtual address and sometimes cause kernel
crash. Masking of such reserved bits was provided for correct virtual address translation

mechanism.

4.1.6 CAVIUM SEGMENT IMPLEMENTATION

CVMSEG is cavium specific memory segment. CVMSEG resides in KSEG3 region and all
memory reference in address range OXFFFFFFFFFFFF8000 - OXFFFFFFFFFFFFBFFF are
treated specially by MIPS core. Access to this segment is controlled by setting
CvmMemCtI[CVMSEGENA*] flags and size of this segment s controlled by
CvmMemCtI[LMEMSZ] field. CVMSEG has two portions

1- CVMSEG LM = OXFFFFFFFFFFFF8000 - OXFFFFFFFFFFFFOFFF
2- CVMSEG 10 = OxFFFFFFFFFFFFAQ00 - OXFFFFFFFFFFFFBFFF

CVMSEG LM is a segment that access portion of DCache as local memory. Larger the
size of this segment, smaller the size of DCache. CVMSEG 10 has only one legal address
OXFFFFFFFFFFFFA200 and store to this address issues IOBDMA command which returns data
from 10 bus to CVMSEG.

Operating system normally uses this region as scratch pad memory and register values are
stored at these locations during context switching. Implementation of this region was crucial for

successful booting.

4.2 MIPS INSTRUCTION SET TRANSLATION

MIPS instructions are mainly categorized as R, I and J types. “R” category contains those
instructions which use on gp registers. | types involves an immediate value plus register and J
type has target address field, no registers to manipulate.

The idea is to not completely emulate the instruction but rather change the registers
embedded in instruction and execute it on hardware as it is. The registers that are replaced are
first loaded with the expected contents. These loading instructions are also written in assembly
language. The complete translation of an instruction will have some loading instructions then the
actual reconstructed instruction and then some storing instructions. Control shifting and flow
control instructions are treated differently.

We have a memory based copy of all registers (i.e. GP, CP and special registers) which
belongs to guest OS. After the execution of particular instruction, guest's registers would also be

updated accordingly. For translating mips instructions into equivalent set of instructions which

will produce same results in the registers kept for guest, we use 3 gp registers. The expected

contents (from host’s point of view) of the registers are first loaded in these registers and then

replaced in instruction to be executed. Results are then saved to our memory based registers.

The categories are based on the type of instruction, privileged or unprivileged, how many

registers are used, what is destination register and how the fields are manipulated.

Below are the categories and the instructions included in them are also mentioned.

4.2.1 PRIVILEGED INSTRUCTIONS

Instructions which involve Co-processor 0 registers are privileged instructions and can’t be

executed in user mode. Privileged Instructions are treated separately.

mfc0: The translated set of instructions will load the contents from particular cp register
and store in the place of destination gp register in the memory.

mtc0: The translated set of instructions will load the contents from particular gp register
and store in the place of destination cp register in the memory. It also checks whether
destination register is $0 or not. If it is then the instruction is replaced with “nop”. Certain
bits of cp registers are reserved. To avoid over writing them, masking is used.

tlbr/ tlbwi/ tlbwr/ tlbp: In case of tlb instructions, an integer is placed on a particular
place in the memory and control is shifted back to handlerRequest(). The control mark
indicates the instruction to be handled accordingly.

di (disable interrupts): First the contents of status register is loaded. If any destination
register is given then the contents of status register is stored at destination register. First
bit of status register is cleared to disable interrupts and the contents are stored in the
status register.

ei (enable interrupts): First the contents of status register is loaded. If any destination
register is mentioned then the contents of status register is stored at destination register.
First bit of status register is set to enable interrupts and the contents are stored in the
status register.

eret (exception return): when exception routine end, eret is executed to return to the pc
from where we have received exception. In its implementation we first check whether erl
bit of status register is set or not. If set then error epc is returned, if not then epc value is

returned. The returned value is assigned as next pc to be executed.

10

4.2.2 UNPRIVILEGED INSTRUCTIONS

Unprivileged Instructions are grouped on the basis of their type and functionality.

e unprev_R

[

All those R-type unprivileged instructions, which use 3 gp registers. 2 source gp

register and one destination gp register.

Includes: baddu, dmul, dpop, pop, or, sllv, dsllv, srlv, dsrlv, rotrv, drotrv, srav, dsrav,
movz, movn, add, dadd, addu, daddu, sub, dsub, subu, dsubu, and, xor, nor, slt, sltu,

mul, wsbh, seb, seh, dsbh, dshd, clz, clo, dclz, dclo, seq, sne (40 total)

First 2 source registers are loaded from memory into register $12 and $13. The
register in the instruction to be translated is replaced with these registers and executed

as it is. The result is stored on the destination memory based gp register.

e shift R

o

All those R-type unprivileged instructions, which are shift instruction and the no. of
times to be shifted is encoded in instruction itself (i.e field from bit 6 to 10). 1 source

gp register and 1 destination gp register.

Includes: dsrl, srl, dsll, sll, drotr, rotr, dsra, sra, drotr32, dsl132, dsrl32, dsra32 (12
total)

First source register is loaded from memory into register 12. The register in the

instruction to be translated is replaced with the register and executed as it is. The

result is stored in the destination memory based gp register.

e mulDiv_R

o

All those R-type unprivileged instructions, which multiple or divide and the
destination registers are special register HI and LO (opposite to mul instruction
included in uprev_R, whose destination is also a gp register) and 2 source gp

registers.

Includes: dmult, mult, dmult, multu, ddiv, div, ddivu, divu, madd, maddu, msub,

msubu (total 12)

First source registers are loaded from memory into registers 12 and 13. The

instruction to be translated is replaced with these registers. After the execution of

11

these instructions the result will be in HI and LO special registers. Mflo and mfhi is

executed after these instructions. The result is stored in the guest's Hi and LO.

> For instruction “madd”, HI and LO are registers of the hardware is also updated first

before executing it.

moveFromLoHi_R

> For moving contents from HI and LO special registers into the gp registers, contents

are loaded from HI and LO and saved at the place of destination gp register.

> Includes : mflo, mfhi (total 2)
moveToLoHi_R

> For moving contents to HI and LO special registers from gp registers, contents are

loaded from particular gp register and saved at the place Hi or Lo register.

> Includes: mtlo, mthi (total 2)
ext R (extract)

> These are R-type instructions, whose fields are used differently than the previous
categories. Bit 16-20 are used for destination register and bits 11-15 are used for size.

1 gp source and 1 gp destination register is used.
> Includes: ext, dextm, dextu, dext, exts, exts32 , (total 6)

> Source register is first loaded in register 12. Then instruction to be translated in
executed with 12 and 13 registers. The result in 13 register is stored in the destination
gp register.

ins_R (insert)

> These are R-type instructions, whose fields are used differently than the previous
categories. Bit 16-20 are used for destination register and bits 11-15 are used for size.
1 gp source and 1 gp destination register is used. Similar to extract but the difference

is that destination register is also loaded before the execution of instruction.
> Includes: ins, dinsm, dins, dinsu, cins, cins32 (total 6)

> Source and destination registers are loaded in register 12 and 13 respectively. Then
instruction to be translated in executed with 12 and 13 registers. The result in 13

register is stored in the destination gp register.

12

e unprev_I

> All those I type instructions which use 1 source and 1 destination register (except lui
which have no source register but the translation would not produce any error if

translated in this category).
> Includes: daddi, daddiu, addiu, slti, sltiu, andi, ori, xori, lui, addi, seqi, snei (12 total)
> Source register is loaded. Instruction to be translated is executed with register 12 and

the result is saved in the destination register's place.

e unprev_I Load
> All I-type load instructions
> Includes: 1dl, 1dr, 1b, lh, Iwl, Iw, Ibu, lhu, Iwr, Iwu, 11, 11d, 1d (total 13)

> First the address from where the contents would be loaded is translated in terms of
hypervisor. For that the address which needs to be translated is saved on a particular
location and control is given to the handler. The translated address is loaded in the
register and then the load instruction is executed. The loaded contents are saved on
the destination register.

e unprev_I Store
> All I-type store instructions
> Includes: sdl, sdr, sb, sh, swl, sw, sh, swr, sw, sc, scd, sd (total 12)

> First the address from where the contents would be stored is translated. For that the
address which needs to be translated is saved on a particular location and control is
given to the handler. The translated address is loaded in the register and then the store
instruction is executed.
e LL and SC: Load-Linked and Store Conditional are two instructions which are used to
atomically implement read-modify-write using a special LLBit. Assembly instructions are

added to translation for correct implementation.

4.2.3 CAVIUM SPECIFIC INSTRUCTIONS

These instructions don’t have the standard R, I or J format. Their format is a bit different along

with a little difference in their operation from standard instructions.

13

saa
o This instruction atomically adds a word to a memory location.

> This is similar to a store but this instruction directly accesses a memory location
contents and adds least significant 32 bits of gp register and save to same memory
location. All this operation is done without any interrupt or execution of any other

instruction.

> Other store instructions store the contents of gp register to a particular memory

location.

> The difference in translation is due to the different format of the instruction. Other
store instruction has an offset field but this instruction doesn't have any offset field.

saad

> This instruction is similar to saa but the register's content to be added will be
considered 64 bit rather than 32 bit.

seqi_snei

> This instruction checks whether the value of gp register is equal to the 10 bit constant,
specified in the instruction. If equal, then destination register is set otherwise cleared.
The translation is provided accordingly.

vimulu

o This cavium specific instruction performs 192x64 bit unsigned multiplication. Its
execution involves special purpose registers PO, P1, P2, MPLO, MPL1 and MPL2. As
hypervisor has its own copy of special purpose registers, so before multiplication we
have to move the contents of these registers to hardware and then execute
multiplication.

mtmo0

> This instruction is R type (related with v3mulu instruction), which could be
categorized in unprev_R. But it moves the contents of gp register to special purpose
register (MPLO).

mtm1

o This instruction is R type (related with v3mulu instruction), which could be

14

categorized in unprev_R. But it moves the contents of gp register to special purpose
register (MPL1).
e mtm2
o This instruction is R type (related with v3mulu instruction), which could be
categorized in unprev_R. But it moves the contents of gp register to special purpose
register (MPL2).
e mtpl
o This instruction is R type (related with v3mulu instruction), which could be
categorized in unprev_R. But it moves the contents of gp register to special purpose
register (PO).
e mtpl
o This instruction is R type (related with v3mulu instruction), which could be
categorized in unprev_R. But it moves the contents of gp register to special purpose
register (P1).
e mtp2
> This instruction is R type (related with v3mulu instruction), which could be

categorized in unprev_R. But it moves the contents of gp register to special purpose

register (P2).

4.2.4 BRANCH AND JUMP INSTRUCTIONS
These instructions include all variants of branches and jumps. One of the reasons to categorize
them separately is due to the execution of delay slot. In this case, two instructions are translated

collectively.

e bne beq (branch if not equal , branch if equal)
> These are only two branch instructions which use two source registers.
> Includes: bne, beq (total 2)

> First the sources registers are loaded into the temp registers and then the delay slot is
executed. Branch's source are first loaded due to the fact that delay slot might change

the contents of the registers involved in branch. For correct execution of branch its

15

source registers are loaded in temporary registers. Then the actual branch is executed
but with different offset because the target address needs translation. If the branch is
taken than offset is added in branch's pc and if not 1 is added in the branch's pc, then

this address is stored on a particular place and the control is shifted to the handler.

e Branch

Those branch instructions which use one source register.
Includes: bltz, blez, bgez, bgtz, bltzal, bgezal, bbit0, bbit032, bbitl, bbit132 (total 10)

First the source register is loaded and then the delay slot is executed. Branch's source
are first loaded due to the fact that delay slot might change the contents of the register
involved in branch. Then the branch is executed but with different offset because the
target address needs translation. If the branch is taken than offset is added in branch's
pc and if not 1 is added in the branch's pc, then this address is stored on a particular

place and the control is shifted to the handler.

e bne beq likely

o

Both instructions use two registers but different from the previous bne beq category
due to the fact that the execution of delay slot is conditional. If the branch is taken

then the delay slot is executed otherwise not.
Includes: beq]l, bnel (total 2)

First the sources registers are loaded into the temp registers and the actual branch is
executed but with different offset because the target address needs translation. If the
branch is taken than delay slot is executed and offset is added in branch's pc and if not
1 is added in the branch's pc, then this address is stored on a particular place and the

control is shifted to the handler.

e branch_likely

o

[

These instructions use one register but different from the previous branch category
due to the fact that the execution of delay slot is conditional. If the branch is taken

then the delay slot is executed otherwise not.
Includes: bltzl, blezl, bgezl, bgtzl, bltzall, bgezall (total 6)

First the source register is loaded into the temp register and the actual branch is

16

executed but with different offset because the target address needs translation. If the
branch is taken than delay slot is executed and offset is added in branch's pc and if not
1 is added in the branch's pc, then this address is stored on a particular place and the

control is shifted to the handler.

* j(jump)

o

It doesn't use any source register. It is an “I” type Instruction.
Includes: j (total 1)

First the delay slot is executed then for executing j the target address needs
translation. The address is extracted from instruction encoding and placed at a

particular place. Then control is shifted to handler.

e jr (jump register)

[

This instruction uses one source register. It is an R type Instruction.
Includes: jr (total 1)

First the delay slot is executed then for executing jr the target address needs
translation. The address is already in the register, it is placed at a particular location in

memory. Then control is shifted to handler.

e jal (jump and link)

o

It doesn't use any source register. It is an “I” type Instruction and differs from

[13%4]

previous “j” due to additional linking operation.
Includes: jal (total 1)

First the delay slot is executed then for executing jal the target address needs
translation. The address is extracted from instruction encoding and placed at a
particular place. Then the linking address (i.e. pc+8) is stored in register 31 and

control is shifted to handler.

e jalr (jump and link register)

o

This instruction uses one source register. It is an R type Instruction and differs from

[13PR 1]

previous “jr”” due to additional linking operation.
Includes: jalr (total 1)

First the delay slot is executed then for executing jalr the target address needs

17

translation. The address is already in the register, it is placed at a particular location in
memory. Then the linking address (i.e. pc+8) is stored in register 31 and control is

shifted to handler.

4.2.5 CONTROL SHIFTING INSTRUCTIONS

These instructions break the normal execution path and shift the control to exception
handler. Executing these instructions as it is on hardware will shift the control to host's exception
handler and not of the guest's. During translation, this type of instruction is replaced with the
instructions, which will shift control to the hypervisor along with a control mark. Hypervisor will
perform exception handling accordingly to control mark value.

e Trap Instructions: Trap instructions in a system shift the control to exception handler if
the condition is true. This instruction can't be executed as it is on the hardware because if
true then the control will shift to host's exception handler. So, the condition is checked

before and if true then the control is shifted to handler, otherwise next instruction.
e teq_tne R

> R type trap instructions, which use two source registers.

> Includes: teq, tne (total 2)

> First the condition is evaluated, if true the control is shifted back to hypervisor
otherwise next instruction is executed.
e tge tgeu tit titu R
> R type trap instructions, which use two source registers but differs in translation.
> Includes: tge, tgeu, tlt, tltu (total 4)
e teqi_tnei_I
> I type instruction, with one source register and 1 immediate value.

> Includes: teqi, tnei (total 2)

o tgei_tgeiu_tlti_tltiu_I

> I type instruction, with one source register and 1 immediate value but differ in

translation.

18

4.2.6

4.2.7

> Includes: tgei, tgeiu, tlti, tltin (total 4)

Syscall: In place of syscall, the control is transferred back to the hypervisor with a
specific control mark. Hypervisor service the exception accordingly.

Break: In place of break, the control is transferred back to the hypervisor with a specific

control mark. Hypervisor service the exception accordingly.

SPECIAL INSTRUCTIONS

rdhwr: This is a special instruction which allows reading of some hardware registers
while in user mode. Due to current translation, only zero is read into the destination
register when this instruction is executed. In case of SMP, it is used to get core number.
Pref, deret, cache and ssnop: These instructions are replaced with “nop”.

Wait: 1P (interrupt pending) bits of “cause” register are monitored continuously. If
anyone of them is set, indicating the presence of external interrupt, control is shifted back

to hypervisor for interrupt handling.

EXAMPLES OF TRANSLATION
1. mtc0

If we have an instruction: mtcO v0, cO_status. After executing mtcO(), translated

instructions would be:
1. 1d t0, offset(a7)
2. sd t0, offset(a7)

[l void Translation IPE::mfcO(IInfo * InsP, std::vector=uint3? t, TransInsAllocator<uint3? t= = &translns) {

IType 1d, sd;

RType rdhwr;

unsigned long source, dest;
int sel;

B

source = InsP-=>rd;
dest = InsP-=rt;
sel = (InsP-=func) & Gx87;

if(source == 9){
transIns.push_back(rdhwr.encode(0PCODE_RDHWR,®,TEMP1,2,0,59)) ;
transIns.push_back(sd.encode(0OPCODE_SD, BASE_REG, TEMPL, (BaseGP + 8 * (dest))));

}else

transIns.push back(ld.encode((

translns.push_back(sd.encode(l

}

>+ (B4 * source)+(8 * sel))));
S+ 8 ¥ (dest)))];

REG, TEMP1,
_REG, TEMPI,

FIGURE 4: Code Snapshot of Mtc0's Translation

19

The first instruction will load the contents from gp source register and second will
store these contents to cp destination register. The offset is created accordingly, as shown

in the code. Figure 4 shows the code snapshot of mtc0’s translation method.

2.sll

If the instruction is: sll al,al,0x2. Translated instruction would be:
1.1d t0,offset(a7)
2.sll 10,t0,0x2
3.sd t0, offset(a7)

e
ut |] signalHandler.cpp * | timer.h * | Processor _IPE.h * |] Processor_IPE.cpp * | %] SystemBoard_IPE.h * | #] Translation_IPE.cpp % -1l L"
Source History - - E B S G R R e o @ = g = L9

581

582 @ void Translation IPE::unprev_R(IInfo * InsP, std::vector<uint32 t, TransInsAllocator<uint3Z t> > &translns) [-
600

601 [void Translation_IPE::shift R(IInfo * InsP, std::vector<uint3Z_t, TransInsAllocator<uint3Z t> > &translns) {

602 [

604 RType InsX;

605 IType 1d, sd;

606 unsigned long sourcel, dest;

607

608

609 sourcel = InsP->rt;

610 dest = InsP-=rd;

511

612 transIns.push_back(ld.encode(0OPCODE_LD, BASE_REG, TEMP1, (BaseGF + 8 * (sourcel))));
613 transIns.push_back(InsX.encode(InsP-=opcode, InsP-=rs, TEMP1, TEMPZ, InsP-»sa, InsP->func));
614 transIns.push_back(sd.encode(0OPCODE_SD, BASE_REG, TEMPZ, (BaseGP + 8 * (dest))));
g15 - }

o

FIGURE 5: Code Snapshot Of SlI's Translation

The first instruction brings the contents from guests gp register into temporary
register t0, 2" instruction executes the actual instruction but in terms of temporary
register. The third instruction stores the result of target address back to the gp register of

guest. Figure 5 shows the code snapshot for sll.

4.3 SOFTWARE CACHE

Guest code passes through a translation layer to make it amenable to run under our hypervisor.
Currently this translation is done instruction by instruction and the output is then fused together
to make a block. By definition one block ends when control flow has more than one option to

move forward (e.g. an unconditional jump, if-else structure etc).

20

Translation is a fairly involved process and it is desirable to do the translation once and
re-use it on subsequent execution. There are many repetitive code structures (e.g. loops) where
one block is executed more than once. To seize these performance opportunities, each translated
cache is stored in a software cache. Software cache is configurable and initially set to a space for
keeping 37 blocks. A class named TranslatedBlockCache is implemented which has rich set of
functions to store, retrieve and search a block.

4.3.1 CACHE STORAGE

Hash Map based storage: Due to previous hypervisor architecture, translated blocks are copied
at a pre-specified place where epilogue and prologue are already present along with some extra
software exception handling code. To copy a block at a new location, software cache generates a
new copy and stores it in the cache. Due to optimization needs, we replaced this by new array

based storage. (For details see section 7)

Array Based Storage: Currently the translated blocks are placed in array of containers. In this
method we don’t copy the translated block to any particular place but instead we use the block as
it is, when it is created dynamically during translation. We store a pointer to these block in a hash

map for reuse.

4.3.2 SEARCHING A BLOCK
Software cache is capable of searching any block in time O(logn) using HashMap that is a C++

Standard Template Library (STL). Hash maps are famous for speedy searching.

Because we have changed our storing mechanism, searching has also changed. Now we find the
block in array using a key and return only the pointer to that container. That’s why our searching
time of block has changed to O(1).

4.3.3 BLOCK RETRIEVAL
Software cache retrieves a block and copies it to a specified location for execution. Retrieval can

be based on specific key provided at the time of storage.

Copying the block to new memory location was time consuming operation. So now, we find the

presence of block in array and retrieval is done by returning a pointer to that block in array.

21

4.3.4 REPLACEMENT POLICY

A simple random replacement policy is used to replace a block when the cache is full. A block is

randomly selected to replace it with the newly coming block. Replacement policy has also

changed. Now, whenever a new block is required, index is generated on base of given key and

old block at that index is replaced by new one. Key is converted to index using eg. Index = Key

% max capacity.

4.3.5 BUGSFIXED IN ADDRESS CACHE

Address Cache Clearing on ASID Change: When kernel runs in user mode and starts
user mode processes then multiple virtual pages can map to a single physical frame or
single virtual page can be mapped to multiple physical frames. For example, for process 1
virtual address 0x120001021 can be mapped to physical address 0x41A36C021. For
process 2, same virtual address (i.e. 0x120001021) can also be mapped to 0x4108D9021.
To avoid conflict in address translation, address translation cache must be flushed when a
process is switched. In case of process switching, kernel writes ID of new process in
ASID field of EntryHi register. When ASID is changed we flush address translation
cache to provide correct address translation.

Read/Write Protection in Address Translation Cache: Guest kernel can set read/write
protection of a page by setting “dirty bit” of entryLo register. When address translation is
done using TLB, the state of this bit should be taken under consideration so that data may
not be written to a read-only page because this can corrupt the data in RAM. Without this
bit implementation memory corruption causes the guest kernel to crash during loading of
dynamic libraries. Dirty bit was already implemented in TLB but was not being checked
during address translation cache implementation. This implementation was provided in

address translation cache for proper working of dynamic user binaries.

4.4 TIMERUNIT

On actual hardware, Operating system keeps track of time by receiving a timer tick after a

configured time. This timer interrupt gives the timing framework to the OS above it. For

providing timer tick to guest OS, we have tried two timer infrastructures. Description of both

along with their drawbacks and benefits are given.

22

4.4.1 CONTINUOUS TICK TIMER

To provide the timer interrupt to the system, we have to provide a continuous tick to the
guest. Timer unit is initialized in a separate thread as the hypervisor is started. The timer Unit
thread registers a timer with the host OS (i.e. 5nsec interval). After every timer expiration time,
the thread directly receives the SIGALRM from the host OS. On receiving SIGALRM signal, the
cause register (IP7 bit) of every core is set. IP7 bit of cause indicates the presence of timer
interrupt. If interrupt mask in status register is set then the interrupt would be taken after setting
exception code in cause. The interrupt mask is configured by the guest itself. The cause is
checked for timer interrupt every time the control is shifted to handleRequest() of hypervisor. So,
timer interrupt can also be taken between the block but not necessarily at the exact time it

occurred.

The timer bit (i.e. IP7) of cause is cleared, when there is a write operation on compare
register. Note that this interrupt isn’t handled by the CIU. CIU can only change IP2, IP3 and IP4
bit of cause register.

Implementation of Count and Cavium Count Register: Only setting IP7 in cause register, at
timer expiration wasn’t the correct implementation that was needed by the guest OS. Count,
Compare and Cavium count registers are hardware register that are used by OS to schedule
processes. Although the kernel keep the timing information by incrementing jiffies at every timer
interrupt but guest also reads these hardware registers for setting timer with the hardware or
getting timing information. These registers are incremented on each clock cycle by hardware and
whenever value of Count register become equal to value of compare register an interrupt is
generated and notifies guest about timer event which then schedules the processes and again sets

time for next timer event.

In implementation, a timer is set with the host for 2ns. At timer expiration, Count and
Cavium count registers are incremented and if Count becomes equal to compare register an
interrupt is generated by setting the IP7 bit of cause register. Count and Compare are hardware
registers and are not readable as GP or CP registers. To read hardware registers, MIPS provide
some special instruction (i.e. rdhwr). Same instruction is used to read count register.

Implementation of this instruction is given to facilitate guest reading these registers and use them

23

accordingly. Figure 6 shows the flow chart of continuous tick timer implementation in

hypervisor.

SIGALRM is received by the “Timer unit” at the
expiration of timer interval

Count and CVM-Count registers are incremented.
Also check whether count and compare registers
have same value

If the value is same, Cause bits (IP7) is set to indicate
the presence of timer interrupt for every core running

J

When the control shifts back to the hypervisor, it
checks for the presence of timer interrupt.

If timer interrupt is present, the guest takes the
exception routine.

- —— 5

FIGURE 6: Continuous Tick Timer Implementation

Drawbacks: Although this design strategy works correctly but it has two major drawbacks.
First, it is computationally intense. As a periodic timer is being registered for such a short time
period (i.e. 5 ns sec) and on timer expiry we have to increment the count by one. Also check the
conditions to whether generate a guest interrupt or not. Second, even incrementing count after
such short duration, the increment of count was very slow. At the command prompt, we see

delayed response of entering the command and its execution due to or slower timer mechanism.

4.4.2 ON-DEMAND TICK TIMER

This strategy is completely different from the Continuous tick timer. In this strategy rather than
creating a separate thread, timer unit is embedded in each core thread. Now the timer works
serially with the core. Figure 7 shows the design difference in Continuous tick timer and On-

demand timer.

24

Continuous Tick Timer On-Demand Timer

* Initializing data * |Initializing data
* Creating threads * Creating threads
* Loading u-boot binary * Loading u-boot binary

\ 4
UART
Clu
Coren
Timer
SIGALRM s recetved by the ~Tim

ner uolt™ at the
expiration of timer interval

Count and CYM-Count registers ate incremented
Al50 check whether count and compare registers
have same value

I the vadue is same, Cawse bits (197) is se1 10 indicate * Block fetching, transiation and execution
the o of 1 I = S 2
presence of thmer intestupt for every core running -/ * Interrupt handling and logging mechanism

Timer
bt v A During execution ifguest read/ write
— R e count, CVMcount or compare registers,
read thehost'stimeandplaceinguest’s
I timer interupt s present, the guest takes the registersor register a timer with host.
\ exception routite / \ /

FIGURE 7: Design Diagram of Two Timer Strategies

In Continuous tick timer, a complete timer device was created. But On-Demand timer works on
different strategy. Previously, the incrementing count register mechanism was way too slow. For
fixing this drawback, now the host time is directly given to guest by reading host time and setting
the guest’s registers. When the guest needs to get time or register a timer, it read/write the count,
compare and CVVMcount registers.

Whenever the guest needs to get time from hardware it reads the count or CVMcount register.
We intercept this read and read the host’s time in nanosecond resolution and update guest’s
count and CVMocount registers. When guest wants to register timer with the hardware, it writes
on the compare register. The write operation is also intercepted by hypervisor and it registers a
timer with the host. The duration of registered timer is kernel’s desired value multiplied by a
multiplying factor. This multiplying factor was needed to reduce the increased timer interrupts.
Otherwise kernel get stuck in servicing the timer interrupts and actual code is not given time to
be executed. After the implementation of this strategy, the prompt is showing less latency when

the command is entered.

25

Advantages: This strategy is not computationally intensive as we only update the count register
when the guest reads it (i.e. on-demand from guest). Now we only register the timer when guest

want a timer registered with the hardware.

45 INTERRUPT AND EXCEPTION HANDLING

Exceptions cause change in normal execution flow and control is transferred to some exception
handling routines, if implemented, or crash the application otherwise. During block execution by

hypervisor, two possible exceptions could occur:

e An instruction like trap or syscall, itself shifts control to an exception routine. Exceptions
like these are called programmed exceptions.

e An exception like overflow, address error and tlb related exceptions are generated during
the execution of instruction. This type of exceptions is unpredictable because they are not

programmed.

The challenge is to emulate exception handling mechanism in user mode. On an
exception, control may go to host kernel and may not return back if not emulated properly. In
case of programmed exceptions, the possible emulation is to replace exception-causing
instruction with innocuous instructions that explicitly transfer control back to a hypervisor
provided handler. The handler could identify actual (exception-causing) instruction from control
mask and handle it accordingly. In second case, a signal is raised that could be caught to handle
the exception. Once the control is available in hypervisor, exception handling routine could be
called to do the rest.

In our implementations, Perform_Exception() is called to set various exception related
registers. Exception code is set in cause register. EI, EXL and/or ERL bits of status register are
set to indicate the presence of an exception. EPC register is set with the program counter (pc) of
exception-causing instruction. According to the exception type, exception entry point is assigned

to current pc so that new block could be fetched from there.

When the exception routine is completely executed, eret instruction is called. eret is
privileged instruction and cannot be executed on hardware as it is (from user mode). To emulate

it, we check the status register and then accordingly set pc back to the address from where

26

exception has actually occurred. Figure 8 shows the overall flow and Figure 9 shows a snippet of
hypervisor code, dealing with exception handling.

Entry point for all exceptions is generic except for tlb. For example, invalid tlb entry
encountered while executing load/store instruction lead to tlb refill exception. The entry point for
tlb refill exception is different from that of others. In case of nested exception (e.g. exception
raised in an exception routine), general exception entry point is used and corresponding
instruction pc is placed in EPC register. Interrupts are caused by external devices in order to
rather communicate or in response to a request. Timer unit creates continuous interrupts in a
running system for providing timing information. UART also communicate with the cores

through generating interrupt.

Fetch and execute next block from exception
entry point

/Se[exception entry point in current PC

Set EPC/ ERROR EPC register

t

Set EI, EXL/ ERL bits in STATUS

t

Set exception code in CAUSE

N S

Exception generation while executing instruction or a
control shifting instruction

FIGURE 8: Exception handling in user mode

27

case HANLDE SYSCALL INT: {

printf("SysCalli\n");

Gobj->prev_PC = *blockStartPC;

Gobj->prev_PC = TLB_Exception::Perform_Exception(core®->getCPO(),HANLDE SYSCALL_INT);
BlockManipulation: :setUContext (Gobj->prev_PC, FETCH NEXT BLOCK);

fetchnPlaceBlock(GVA):
return true;

break;
}
case HANLDE OTHER INT: {
Gobj - ->prev_ Pr = *blockstartPC
printf("f {ER \n");
p: EPRINTUAL:cntrlMark}
break;
}
default: {
switch(cntriMark) {
case HANLDE TLB PROBE: {
if(DBG)printf("t BE!\n");
coref- >getTLB{) >tlb probe{l
iF(DBG) printf("] R 00161 1x\n", cored->getTLB() ->get_index());
return true;
break;

FIGURE 9: Code snippet showing the emulation of exception handling

4.5.1 SIGFPE: FLOATING POINT EXCEPTION HANDLING

This exception is thrown if the result of an operation is invalid or cause divide-by-zero,
underflow or overflow. On production of such results during guest code execution, underlying
hardware generates SIGFPE signal. Our hypervisor provide a handler to catch this signal. When
control comes to this handler, we redirect it to the exception routine of guest operating system.
After executing exception routine, control comes back to the handler form where it is jumped

back to the immediate next instruction of exception-causing instruction.

4.5.2 SYSCALL: SYSTEM CALL HANDLING

The system call is the fundamental interface between user mode programs and Linux kernel.
syscall() is a small library function that invokes the system call whose assembly language
interface has specified number and type of arguments. Whenever the syscall instruction comes in
guest code, control is transferred to hypervisor code and then redirected to corresponding
exception handling routine of guest operating system. The remaining mechanism remains same
as above.

4.5.3 TLB AND ADDRESS ERROR EXCEPTION HANDLING
When the load/store instruction has to be performed in hypervisor first the address on which the

load or store has to be performed, is translated into hypervisor address. During this translation,

28

privileges are checked, whether this address is allowed to be accessed or not. If not then address
error exception is generated and the next block fetched would be from the exception entry point.
But if we have an address which is not violating any privileges, then the contents are looked up
in TLB. If the invalid bit or dirty bit is set or no entry is present in the TLB then corresponding
exception Mod, TLBL or TLBS is generated.

4.5.4 MODIFICATION IN EXCEPTION HANDLING
Context register was not set before in case of exception because this register is normally used in
32-bit mode but guest was using this register in user mode. Now context register is also been set

so guest can read it and perform exception handling correctly.

4.5.5 EXTERNAL INTERRUPTS

Interrupts are caused by the external devices like timer and UART. When an interrupt occurs it
set the “pendinglnterrupt” variable, which indicates that external interrupt is present. Before
fetching the next block, it is checked whether there is any pending interrupts or not. If they are
present then some particular bits of status are checked to determine this interrupt should be
passed or not. The exception code set for the interrupt is zero and routed to general exception
entry point. It is the responsibility of the kernel handler to figure out what kind of interrupt has

occurred and dispatch it to proper handler.

4.5.1 CTRL+C SIGNAL FOR GUEST

CTRL + C signal is used to terminate a process in OS. When we press CTRL+C the host OS
terminates hypervisor instead of terminating process in guest. For implementing process
termination in guest, hypervisor captures this termination signal and sends CTRL+C ASCII
character to guest through UART. When guest kernel receives CTRL+C through UART, it
terminates a guest process. CTRL+A should be pressed for terminating hypervisor.

4.6 SMP SUPPORT

As mentioned in our high level design, every core will be running in a separate thread that will
make our hypervisor a multithreaded process. For providing SMP support, some code level
structural changes were needed (e.g. removing all global variables and creating separate objects
for each core). Figure 10 shows the multithreaded view of hypervisor, with cores and CIU as

separate threads. First hypervisor initialize the necessary data structures and objects. Then it

29

loads uboot binary and dork child threads according to the number of cores initialized and other
parallel units. Initially only Core 0 is running and other cores are is sleep mode. After some
booting process core O enables all other cores. This enabling and controlling mechanism is
carried out through CIU (Central Interrupt Unit). The other mechanisms like fetch, translate and
execution of blocks remains the same for all cores (section 4.2). Figure 11 shows the modified

flow chart of hypervisor.

4.6.1 INTER-CORE COMMUNICATION THROUGH CIU

For Cavium mips64, inter-core communication is performed through CIU. Specific CIU registers
(like CIU_Fuse, CIU_NMI , CIU_PP_RST and mailbox registers) are used during interrupt
dispatching and identification. CIU_Fuse register contains the information about the number of
processors in the hardware. Operating system can have have this information by reading
CIU_Fuse register. After some initial booting process core 0 signals other cores to initialize
themselves. To do so, primary core (i.e. core 0) sets a bit corresponding to the particular core in

CIU_PP_RST register and that core initializes itself on low power mode.

* Initializing data
* Creating threads
* Loading u-boot binary

Wait for
NMI.
Received?

* Block fetching, translation and execution
* Interrupt handling and logging _/

Kmechanism J

FIGURE 10: Multithreaded view of hypervisor and external devices

30

v
ohesue Thread Pool for
Initialization of Cores
and Components [: Cores and
Devices

I

-+ Load Guest binary

No
— Wait for NMI

Yes
A 4

Yes . Fetch first block from Translated
0xBFCO0000 Block Cache

'

No|

Is
received
MI?

Translationand [*
placement of guest Fetch Next Block
block <

No

:

—» Jump into assembly

____________________ " '

Is next
black is in
cache?

Yes
PRLZE

E Testing Mechanism | v
[B N S e R s S R : -
4 Execute block
i ™ “, Handle Request (e.g.
L5, SR “1 If block A
! i No TLB checking,
| Log file | i ——— e Address Translation
. ! completed?)
e etc.

Display Error B No
Message

FIGURE 11: Execution flow of hypervisor with SMP

Our CIU unit and other cores are all in separate threads. The threads running cores (else than
primary core) will initially be in sleep mode. Core 0 sends NMI pulse to each core by setting
corresponding bit in CIU_NMI register, secondary cores goes out of low power modes and start

initializing core.

31

4.7 10 DEVICE MANAGEMENT

In hypervisor, each core and 10 device is emulated in separate thread. When a core has to
communicate with any device it either reads or writes 10 device register. Corresponding 10
device is notified and device updates its flags according to the operation. Implementing each

device in a separate thread enables maximum parallelization.

To notify 10 device thread, a separate class is defined named DeviceMessageBox. It
contains address which is being accessed, data which is being written to the register at specified
address and whether it is read/write operation. Some posix variables are also part of

DeviceMessageBox which are required for thread communication.
At time being, only 2 10 devices are implemented

1. UART (Universal Asynchronous Receiver Transmitter)
2. CIU (Central Interrupt Unit)

4.7.1 UART

The UART is typically used for serial communication with a peripheral, modem (data carrier
equipment, DCE), or data set. Either a core or a remote host can use the UART. The cores
transfer bytes to and receive characters from the UART core via 64-bit CSR accesses. The
UART core transfers and receives the characters serially. Either polling (during booting/ in
kernel mode) or interrupts (after booting/ in user space) can be used to transfer the bytes.
Processor communicates with console and keyboard using UART device. So, its implementation

was inevitable for a complete booting system.
There are basically 12 register in UART.

e RBR (Receiver Buffer Register): Receiver buffer register contains data received
from input device. Whenever data is received, “Data Available” flag is set in LSR and
an interrupt is generated by the UART so that processor can get received data.

e THR (Transmitter Holding Register): Transmitter holding register contains data
which is being transmitted to the output device. Whenever this register is written,

“THR empty” flag is cleared in LSR and UART starts transmitting data. After data is

32

being transferred successfully, “THR empty” flag is set in LSR and interrupt is
generated to tell the processor that UART is idle now and ready to send new data.
IER (Interrupt Enable Register): Interrupts are not generated unless UART is told
to do so. Processor enables UART interrupts by setting corresponding flags in
Interrupt enable register.

IIR (Interrupt Identification Register): Whenever an interrupt is occurred,
processor jumps to its interrupt routine. The interrupt routine must know which kind
of event caused that interrupt so that it can service it properly. IIR register tells the
processor about the cause of interrupt.

FCR (FIFO Control Register): FIFO is used in UART for both receiver buffer and
transmitter buffer. Whenever data is received, it is placed in RBR. But if RBR is not
empty then data is moved to receiver FIFO. When UART is transmitting data and
new data is provided by processor then it is placed in transmitter FIFO. FCR is used
to control the behavior of the FIFOs.

LCR (Line Control Register): LCR is set at initialization time and controls the
parameters of line. Parity and number of data bits can be changed using LCR. DLD
and DLH can also be accessed by setting “DLAB” flag in this register.

MCR (Modem Control Register): MCR register is used to perform handshaking
actions with attached devices. Setting and resetting of control registers is done using
this register.

LSR (Line Status Register): LSR shows the current state of communication. Errors
are reflected in this register. The state of receiver and transmitter buffers is also
available.

MSR (Modem Status Register): MSR contains information about the four incoming
modem control lines on the device. The information is split in two nibbles. The four
most significant bits contain information about the current state of the inputs where
the least significant bits are used to indicate state changes. The four LSB's are reset,
each time the register is read.

SCR (Scratch Register): There is no use of this register in UART communication.

Sometimes it may be used by processor to store a single byte.

33

e DLL (Divisor Latch LSB) and DLM (Divisor Latch MSB): For generating its
timing information, UART uses an oscillator. Oscillator frequency is divided by 16
and obtained value is further divided by value placed in Divisor Latch registers. In
this way, baud-rate of UART is adjusted. For error free communication, both receiver

and transmitter UART have same timing base i.e. have same baud-rate.

Implementation of UART: There are basically two functions of UART. Transmit data provided

by the processor and receive data from input devices. For both these functionalities we have

separate threads called Receiver Thread and Transmitter thread.

Receiver Thread: The purpose of receiver thread is to handover data to processor which
we input using keyboard. This thread continuously checks for availability of input from
keyboard. Whenever input is available, it sets “Data Available” flag in LSR and
generates an interrupt. When processor reads received data, “Data Available” flag is
cleared from LSR.

Transmitter Thread: The purpose of transmitter thread is to transmit data which is
being provided by the processor. Transmitter thread helps the processor in printing all the
messages on the console. After transmitting data, it sets “THR is empty” flag in status
register and generates an interrupt to tell processor that UART is free now for further
transmission.

Interrupt Generation: When UART performs an operation, it checks it IER. If interrupt
for corresponding action is enabled, it sets appropriate flags in IIR and notifies the CIU
thread about interrupt generation. CIU reads enable registers of all the cores to check if
any core wants to receive UART interrupt. If it finds the core with enabled UART
interrupt, it sets summary register for that core and generates interrupt. Core jump to its

interrupt routine and service the interrupt.

Modification in UART implementation:

In previous version, some characters of guests console output were sometimes missed due to two

problems. First, “printf()” was used to print characters which is in fact formatted output and

takes much time so we implemented this mechanism with “write” system call which is

34

unformatted and is faster than “printf()”. Second, wait mechanism was introduced in core

implementation. Core waits for the UART to print previous characters before sending new ones.

4.7.2 CENTRAL INTERRUPT UNIT (CIU)

CIU is responsible for dispatching interrupt requests (coming) from external devices to a
particular core. CIU is discussed here in context of our test bed i.e. Cavium Networks OCTEON
Plus CN57XX evaluation board [1]. CIU distributes a total of 37 interrupts i.e. 3 per core plus 1
for PCle. Three interrupts for each core set/unset bit 10, 11, 12 of Cause register of the core.
Using these cause register bits, interrupt handler of a core could prioritize different interrupts.
Interrupt requests from external devices are accumulated in a 72-bit summary vectors with
naming convention CIU_INT<core#>_SUM<0|1|4>. Summarized interrupts reach to their
ultimate destination by using corresponding 72 bits interrupt enable vector with naming
convention CIU_INT<core#> EN<O0|1> and CIU_INT<core#> EN4 <0|1>.

Interaction of CIU, external devices and cores is shown in figure 12 (a). CIU reads memory
mapped registers of the external devices to know about pending interrupt requests and sets
corresponding bits of cause register of target core. Figure 12 (b) shows a simplest description of
the internal working of CIU, where interrupt identification/handling is done in software.

We have implemented a simplest abstraction of CIU. It has been integrated in a copy of main
hypervisor code and works as a separate thread. CIU is only reading CPQ's cause register. As
UART is not fully developed yet, UART's memory mapped registers are artificial (for the time
being). UART writing and other devices would be implemented in future. CIU itself has set of
summary and enable registers for every core. An interrupt request goes to only those cores that
had enabled the interrupt by configuring its enable register. In current code, CIU reads UART's
Interrupt Identification Register (IIR), extracts identity bits and set/clear the corresponding
summary registers bits. These summary registers for every core are than “AND” with their

enable registers to set or clear cause register's bit 10, 11 and 12.

35

External
Device 1

Memory mapped
registers for
external device 1

External
Device 2

Memory mapped
registers for
external device 2

UART

Memory mapped
registers for
UART

Clu

J’ Core 0

————————® Corel

- g Core2

—————® Core0

FIGURE 12(A): (CIU) Interrupt distribution from external devices to core

Interrupt enabling
registers (every core
has own set of interrupt
enabling registers,
which are configured
by software)

Creating Summary
registers by reading the

| N
S memory mapped
registers of external
devices

ClUu
—
N,
| AND [

OR

L N

“| pP4,1IP3,IP2]

Output goes

to CAUSE

of all cores

FIGURE 12(B): Internal working of CIU, inwards arrow comes from external devices and outward arrow

goes to all cores

36

CORE 0 UART

‘ UART's RW registers ‘

CPO and gerenal
purpose Registers

'UART's RO registers |

CPoscase | | el
: register E jlrisyEusrifllng)
Enable Register | | CIU's Summary

for Core0 | Registers |
Enable and Summary
Registers for other cores Cilu

FIGURE 13: Memory mapping between core and external devices

In integrated code, shared memory regions are defined for CIU to work with other components
of virtual board (see figure 1). Figure 13 shows these shared memory regions for core0, CIU and
a single device i.e. UART. Region overlapping and dotted lines represent the accessibility and
access mode of registers, respectively. For example, CPO Cause register belongs to core0, ClU
can access it but UART cannot. As Cause register belongs to core0, it can be read-written by
core0 but it is read-only for CIU. 1IR register of UART is read-only for CIU and Core0, hence it
is at the intersection of three regions and have dotted boundary. CIU's summary registers are
read-only for core0, hence dotted and at the intersection of two regions. As CIU's enable register
is readable and writeable for core0 and CIU, it has solid boundary and lies in overlapped region.

5 VIRTUAL DISK

A virtual disk (also known as a virtual drive or a RAM drive) is a file that represents as a
physical disk drive to a guest operating system. The main idea of providing disk to guest was to
create persistence of data across boot. The guest should be able to create and store files on the

drive. A simple way of achieving the goal is to create a RAM disk.

A RAM disk is a virtual hard drive stored in RAM. A RAM disk can show the necessary file

system to the guest. Hypervisor creates a ram disk file by using the “mkfs” command, mount it

37

and map it to hypervisor’s RAM region. So, when guest will write to its ram disk, hypervisor
will write it to the ram disk file on the host system. But the only problem was that, by definition
ram disk don’t persist data on reboot. For persistence, the ram disk file we create for the guest is

saved on shutdown by hypervisor and the contents will be loaded on the next reboot.

Host Hypervisor {(Host's process)

Guest

RAM

FIGURE 14: RAM disk Implementation in Hypervisor

6 TESTING INFRASTRUCTURE

Testing infrastructure involves MIPS64 evaluation board with multicore Octeon processor,
hardware debugger (JTAG), development system and testing routines. We need rigorous testing
to make sure that guest kernels run in complete isolation from each other and from host kernel.
Similarly, on each instruction execution in virtualized environment, changes to system state

should imitate the changes made by executing the same in real environment.

38

6.1 TEST CASES

Hypervisor manipulates (i.e. emulation/code patching) guest code to use privileged hardware
resources controlled by host kernel. Hence, various test cases are needed to make sure the
consistency and integrity of guest code. Up to current deliverable, our focus is on the test cases

discussed in following subsections.

6.1.1 MATCHING SYSTEM STATES

In our case, system state consists of the values of general purpose registers and some of
coprocessor 0 (CPO) registers at a particular instance. In order to verify the correct working of
hypervisor, we run (same) executable binary directly on Cavium MIPS64 board and through
hypervisor. We get real system state on each privileged instruction by using JTAG and compare
both outputs (hypervisor and JTAG) for verification. JTAG provides the facility of setting
hardware breakpoints at each privileged instruction to stop and take log of system state. Without

setting breakpoints, it logs the state at every instruction execution.

6.1.2 EXECUTION PATH

Due to emulation and code patching, guest code execution path may differ from that of the same
binary running directly on board. Taking Log at breakpoints may fail due to unavailability of a
priori information about execution path of guest code. For example, if guest code sway from the
path containing some breakpoint, we would not be able to take system state at that breakpoint

and state matching test result will be misleading.

Logging system state after each instruction execution could help in avoiding the situation of
taking wrong execution path. This allows us to debug the potential causes of error (if any) by
looking at system state before and after the execution of malfunctioning instruction. However,
there is inherent overhead of logging state at each instruction execution. There were about
339351 instructions executed by u-boot. JTAG created a file of about 6MB in approximately 7
hours. Generated file contains data (i.e. general purpose registers + CPO registers content) of
about 2600 states. To reduce state logging time, we decided to use a small binary (i.e. code for
irrelevant external devices is commented out) and take log on Quick Emulator (QEMU). To take
log on QEMU, we used the expertise of another HPCNL team working on a different project
titled “System Mode Emulation in QEMU”.

39

6.1.3 COMPARING CONSOLE OUTPUT
On reaching the stage where console is get attached with our hypervisor, the binaries, executing
within hypervisor, starts emitting messages on console. It serves as another way of validation,

whereby output of our hypervisor is compared with that of real MIPS system.

6.1.4 PROGRESS

The progress is tracked by identifying labeled blocks, in binary code. The blocks are identified
by following the control flow of binary. When the instructions in one block are executed, its
label is noted and control is conditionally/unconditionally transferred to the next block in control
flow. This way we measure the progress that how many blocks have been executed and how
many left.

Emulation and code patching may lead to infinite loops in the code. For example, if
emulation/patching changes system state in such a way that control is transferred to one of prior
blocks of the current block, the hypervisor will enter into an infinite loop. We need to avoid the

situations like this in order to make progress.

6.2 TESTING WITH SMP SUPPORT

Testing and Debugging with single core was much easier. But for multi-core the testing and
debugging has become a difficult task. As every core executes its piece of code, the
corresponding log file is written separately for each of them. Each log file for every processor
contains the original instruction block (guest instructions), its corresponding translated block
(host instructions) as well as a state of all GP registers and CPO registers. This information is
enough to check whether the corresponding block executed correctly or not. The original and
translated blocks in the log verify the correctness of translation. Remaining information is used

to determine whether corresponding instruction is correctly emulated or not.

6.3 BOOTING WITH CUSTOMIZED MINIMAL INITRAMFS FILE

The file system upon which the root directory can be mounted and which contains the files
necessary to bring the system to a state where other file systems can be mounted and user space
daemons and applications are started, is called rootfs. The kernel boot process concludes with the

init code (see init/main.c) whose primary purpose is to create and populate an initial root file

40

system with a set of directories and files. It then tries to launch the first user mode process to run
an executable file found on this initial file system. This first process (“init") is always given
process ID 1. Once the init process is started it typically begins to launch other user space
programs. On a desktop or server system this is known as the sysvinit process and includes the

set of scripts found (typically) under /etc/rc.d.

In default rootfs file, most of the scripts are used to initialize and communicate with
external devices. As we have not yet implemented these devices, the default roofts cannot be
used. So, we have created our minimal initramfs, which only have console as mounted device
and contains no initializing scripts. This file performs the basic I/0O operations like creating,
reading, writing a file and process creation. The file doesn’t involve any external communication

with the devices.

We have also executed the same binary containing our customized minimal initramfs on

CN57XX Cavium MIPS64 board. It shows the same output on the console as our hypervisor.

6.4 VIRTUAL ETHERNET CARD DETECTION

For Ethernet card detection, we configured the kernel with networking and executed the guest.
The hypervisor successfully detects the virtual Ethernet card, as shown in the Figure 15. It
detects the standard e1000 network interface.

6.5 ASSIGNING A VALID IP TO GUEST

A separate guest network module is created for enabling networking in the kernel. This module
will initialize a network interface for the guest. It is initialized during the kernel booting and the
networked is configured (i.e. assigned an IP) in the kernel’s initializing script. So that when the
kernel is booted and command prompt appears, we can verify the network interface with
“ifconfig” command. This command lists all the available network interfaces. The Figure 16
shows the result of “ifconfig” command after the kernel booting. The guest’s console output
shows two network interfaces, one is loopback “lo” and other is “net1” which is guest’s network

interface with a valid inet IP.

41

ﬁ Bootinglog.txt - Motepad
File Edit Format View Help

TCP reno registered

NET: Registered protocol family 1

RPC: Registered udp transport module.

RPC: Registered tcp transport module.

RPC: Registered tcp NF5v4.l backchannel transport module.
Jproc/octeon_perf: Octeon performace counter interface loaded

wWe are inside fixup_exception and baddr=0 and addr=0

HugeTLE registered 2 MB page size, pre-allocated 0 pages

JIFF52 version 2.2. (NaAND) © 2001-2006 Red Hat, Inc.

msgmni has been set to 1824

alg: No test for stdrng (krng)

io scheduler noop registered

io scheduler anticipatory registered

io scheduler deadline registered

io scheduler cfq reaistered (default)

serial: 8250/16550 driver, 2 ports, IRQ sharing disabled

serial8250.0: ttys0 at MMIO Ox1180000000c00 (irg = 59) is a OCTEON

console [ttys0] enabled, bootconsole disabled

console [ttys0] enabled, bootconsole disabled Booting log Showing the

brd: module loaded detection of ethernet card
; dule Jozded

Tntel(R) PRO/1000 Network Driver - wversion 7.3.21-K5-NAPI

Copyright (c) 1999-2006 Intel Corporation.

1000e: Intel(R) PRO/1000 Metwork Driver - 1.0.2-k2

01000e: Copyright (c) 1999-2008 Intel Corporation.

SKyZ driver version L.2%

FIGURE 15: Booting Log of Hypervisor, Showing the Detection of Ethernet

f 1}
/ kics-hpcnl@localhost:~ \ kics-hpenl@localhost:/home/kics-hpenl kics-hpenl@localhost:~/Documents/bil

Loading IPvE module

calling 1inet6_init+0x0/0x4dc [ipvE] @ 719

MNET: Registered protocol family 10

initcall inet6 init+0x0/0x4dc [ipvB] returned @ after 156 usecs
Mounting file systems

Setting up loopback

Starting syslogd

Starting telnetd

Jan 1 00:00:00 (none) syslog.info syslogd started: BusyBox vl.2.1
/sbin/rc complete

Jan 1 00:00:00 (none) daemon.info init: Starting pid 729, console /dew/ttyS0: '/bin/cav_sh'

BusyBox v1.2.1 (2015.03.11-11:14+0000) Built-in shell (ash)
Enter 'help' for a 1list of built-in commands.

~ # ifconfig
1o Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
P LOOPBACK RUNNING MTU:16436 Metric:1
RX packets:0 errors:0 dropped:0 overruns:@ frame:0
TX packets:0 errors:0 dropped:0 overruns:@ carrier:0
collisions:0 txqueuelen:
RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

netl Link encap:UNSPEC Hwaddr Q0-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00
inet addr:1@.11.21.66 Bcast:10.255.255.255 Mask:255.0.0.0
UP BROADCAST RUNMING MTU:16436 Metric:1
RX packets:0 errors:0 dropped:0 overruns:@ frame:0
TX packets:0 errors:0 dropped:0 overruns:@ carrier:0
collisions:0 txqueuelen:0
RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

N#I

Figure 16: Guest's Network Interfaces

42

7 TEST RESULTS

The sample output of system state test, execution path test, TLB, page table, CIU and hypervisor

console is elaborated in this section.

7.1 OUTPUT OF SYSTEM STATE MATCHING TEST

We trap at every instruction to create a state-file. This state-file is matched with QEMU log
state-file to see if any register contains different contents. Mismatches are written in other file as

shown in Figure 17.

|_| EOpen v h‘%‘JSave | E ‘ JUnde & “ S5l | Q q
=Y

| LI Qutput_file.txt * |

PC_E=0xffffffffcAO2700c PC_0=0xffffffffcO02700c
GP_Regs:

Bx000E0AE0ERAEAGT0 ** OxB00AEAEAEAARAEA0 Rl:
Oxfffffffffffffffc == OxfFfffffffffffffc R2:
Oxffffffffc@O5b7cO *x OxffffffffcOO5bBa8 R3:
Oxfffffffffffffff8 == Oxfffffffffffffff8 R4:
Ox00REEEAEEENEREO3 *x Ox00REEEOEEENERE20 R5:
Axffffffffc@O5b7c8 o OxffffffffcOOsbBb0 RE:
OxffffffffcOO5h70h0 == OxffffffffcO@shybo R7:
OxffffffffcOOc2020 *x OxffffffffcOOc2050 R8:
Ox00REEEAEEAENEREE5 *x Ox00REEEOEEERERE22 R9:
Ox00REEEAEEAENEREEE0 == Ox00REEEOEEEOEREEE0 R10:
AxffffffffcOO5b7b0 == OxffffffffcO@sh7bo R1l:
Bx000EEAEAERAEAEA0 == Ox000AEEEAEMARAEAR R1Z:
OxffffffffcO059alo == OxffffffffcOO59alo R13:
Ox00REEEAEEENERE20 == Ox00REEEOEEENERE20 R14:
Ox00REEEAEEAENEREEE0 == Ox00REEEOEEEOEREEE0 R15:
Bx000000E00000002¢ o OxB0000C0RE00R00TE R16:
OxffffffffcOOc2020 ** OxfrffffffcOc2050 R17:
Ox00REEEAAEEAER0ALC *x Ox00REEEOEEEOEREEE0 R18:
Oxffffffffc@OdIfb8 *x Ox00REEEOEEEREREET R19:
Ox00REEEAEEENERE18 *x Ox00REEEOEEEAER1E0 R20:
Axffffffffcl0doef8 o OxffffffffcO@d5cfo R21:
Bx000000E4] ffdoeed ** Ox0000EEEAEAARAEAT R22:
Ox00REEEAEEAENEREE0 == Ox00REEEOEEEO8REEE0 R23:
OxffffffffcOO5cOab == OxffffffffcOO5cBa0 R24:
Oxffffffffc@026cBc == OxffffffffcOO26c8c R25:
Axffffffffclidoefs == Oxffffffffcl@doefs R26:

FIGURE 17:

Output of system state matching test

43

7.2 OUTPUT OF EXECUTION PATH TEST

We face difficulties in debugging if QEMU log is missing instruction log at different points. To

ensure that the hypervisor is on the right track we match the Program Counter (PC) values taken

by hypervisor and all the PC values taken in QEMU log, as shown in figure 18.

38 cO0Bae5c
39 cOOBaeBl
40 cOOBaebd
4] cQOBaebs
42 cPOBaebc
43 cO0Bae’0
44 cPOBae74
45 cP0Bae¥8
46 cQOBae’c
47 cPOBaeBO
48 cO0BaeB4
49 cPOBaeB8
50 cB0BaeBc
51 cQOBae90
52 cQOBae94
53 cO0Bae98
54 cPOBae9¢c
55 c00Baeal
56 cQ00aead
57 cB0BaeaB
58 cO0Raeac
59 cPOBaebl
60 cB0OBaebd
61 cOOBaebs8
62 cPOBaebc
63 cO0Baech
64 cOOBaecd
65 cPOBaec8
66 cO@Baecc

|_| QOpen v h‘%‘JSave | @ |

Undo _:> | “ &5 @ | Q

I||r [[] pePath.txt * 1'.U gemu_CompletePcPath3.txt *

matched
matched
matched
matched
matched
matched
matched
matched
matched
matched
matched
matched
matched
matched
matched
matched
matched
matched
matched
matched
matched
matched
matched
matched
matched
matched
matched
matched
matched

67 hypervisor c@00aed® mismatched gemu pc cGREbE74

7.3 OUTPUTOF TLB TESTING

FIGURE 18: Output of execution path test

To test TLB mechanism, random TLB entries are generated and searched in TLB. A TLB miss is

obvious because the entry is newly generated. Hence, probe bit is set and TLB write-random

function is called to place this entry at the index present in CPO random register. Random

register is incremented and entry is searched again. On TLB hit, we call TLB read to fetch the

entry from the index set by TLB probe, as shown in Figure 19.

44

File Edit View Search Terminal Help

octeon: fhome/kics/Usama Data/VExecutor# . /dist/Dabug/MIPSE4-Linux-x86/vexecutor
Wired value is €.

tlbr=:Entry not found

t1bwr=>TLE Written; At index 63, Random; 63

tlbp:TLB found entry:63

tlbr==TL8 read: At index 63, Random: 63

Valid:TL8 Invalid exception handling

tlbwi==TLB Written: At index 63, Random: 63

t1bp:TLB found entry:63

tlbr=>TLE read: At index 63, Random: 63

Valid:TL8 Invalid exception handling
e e e
tlbr=:Entry not found

tlbwr==TLB Written: At index 63, Random: @

t1bp:TLB found entry:0

tlbr=>TL8 read: At index G, Random: 0O

Valid:TLB Invalld exception handling

t1bwi==TLB Written: At index O, Random: O

t1bp:TLB found entry:0

tlbr=>TLB read: At index @, Random: 0

Valid:TL5 Invalid exception handling
e
tlbr=sEntry not found

tlbwr==TLB Written: At index 63, Random: 1

t1bp:TLB found entry:l

tlbr=>TL8 read: At index 1, Random: 1

Valid:TL8 Invalid exception handling

t1bwi=>TLB Written: At indax 1, Random: 1

t1bp:TLB found entry:l

t1br=>1L8 read; At index 1, Random: 1

Valid:TL5 Invalid exception handling

G R i e e
tlbr=sEntry not found

tlbwr==TLB Written: At index 63, Random: 2

t1bp:TLB found entry;:2

tlbr=>TLB read: At index 2, Random: 2

Valid:TL8 Invalid exception handling

FIGURE 19: Searching for random TLB

Then TLB write-index function is called that writes TLB entry at the index present in index
register. As index register was set by TLB probe, it writes the entry at same index that was
previously written by TLB write-random. TLB probe and TLB read are called again and then a
new random entry is generated. This process is repeated 640 times.

45

fle Edt View Search Temminal Help

FIGURE 20: TLB entries in TLB table

As TLB could have 64 entries at max, additional entries require a replacement policy. After
setting all entries, TLB entries are printed, as shown in figure 20. To test page table, a random
GVA is generated and searched in the page table. Obviously, there is no matching entry in page
table because this is the newly generated address. Hence, it maps a new memory region and
returns its address. This process is repeated several times. Each time it maps a new region, places
translation in page table and returns translated address. The output is shown in figure 21(a). After
creating appropriate entries in page table, same process is repeated again for all the generated
addresses and we get valid translation now, as shown in figure 21(b). Then whole page table is
printed in figure 21(c) and reverse page table, shown in figure 21(d), is also managed to use for

future testing of hypervisor.

46

Fie Edt Vew Serch Temns Help Fle Edt Vaw Sewch Temnd Help
ran size is B
ko0 ot founc. kep found

Fapping nenary regicn. Guest Vh: 0366031671a20880 Host Vh: 0366711919a26360
lGusst A: OUEGABIS!1azedBG Host WA: GROS7FISH3026000

b nat found. Host VA: 03607f1919a25860
oping nemary rogion.
Gusst UA: DOEBOBIGFIJO0NE0 Host VA: BEGATFISNSZSER rep founc

Gusst Vh: GBBOOSLIBIIBE Host VA: O36O71ISISa24860
I#ap nat foung.
acping nemary region rep foune
Guost A: COBGOBIT2OF3RE0 Host VA: BEGRTFISFSa2d000 Gusst VA: GI0OBI6I2EH60 Host VA: 0360711913a23900
[hap nat found. Mep found.
Pcping memary region. st Vh: GB6G3I6T2T00080 Host VA: 036GTTIS9E22960
Gucst uA: COBGADIGT245AR0 Wost VA: HEGRTF191923608

Mep found.
I nat found. Guest VA: 0860081672b1a866 Host VA: 03867f1919a21060
Pcping memary region.
Gusst A: CGBGSBIGTZIEENE0 Host VA: BEGGTF1S19a22008 hep founs

Gusst Vi: OaoBL6Te7cEB Host VA 191320860

ko nat founc.
kaoping nenary reglon. hep founs.
[Guest VA: GIBG3BIST20]066 Host WA: BBG87190a21608 Gusst VA: 08600316131d1860

hap nat found. Map found.
[Papping nenary region. Gusst VA: 0860001613541660
Juest YA: BOBGB1S 2e7cHBE Host VA: BB0S7f19f9a28608 o
hap nat found. Guest VA: 0860931673858860 Host VA: 0366771913a1d066
Mapping memary region.
[Gusst YA: DIBGABISTI1AAIEG Host VA: GEO87f15¢3al1008 :::la‘):: il B S
rap nat found.
Jrapping nemary region. ep found.
[Gugst YA: DIBGABISTISA10E0 Host VA: BE087F193aleb0d [Guest VA: 0360391613f69866 Host VA: B3BOTF19FIalbage
(a) (b)

Fle Edt Vew Sench Termial Help File Edit View Search Terminal Help
I : Guest VA: 00000016f7fb6000 Host VA: 00007f19f9a03000
b Guest VA: 00000016f8318000 Host VA: 00007 f19f9a02000
(5 fost 1A e 37Saoecd Map size is 32.
g5 fost VA: OBEATF3fSED5009 Reverse map entries are :
s fost 1A e 57%04E00 Host VA: 00007f19f9a02000 Guest VA: 00000016f8318000
s fost 14 R 197%a3609 Host VA: 00007f19f9a03000 Guest VA: 000000167 fb6000
[z fiost 14: ORGET137%:22609 Host VA: 00007f19f9a04000 Guest VA: 00000016f7c54000
(251 1 O8667F1073:21008 Host VA: 00007f19f9a05000 Guest VA: 00000016f78f1000
(5 fost 1A e 37Saee00 Host VA: 00007f19f9a0b000 Guest VA: 00000016f758f000
s fost 1A G 57SaL ol Host VA: 00007f19f9a0c000 Guest VA: 00000016f722c000
s fost 1A e 57%aebdd Host VA: 00007f19f9a0d000 Guest VA: 00000016f6ecal00
s Fost 142 ORee7197%a1 0609 Host VA: 00007f19f9a0e000 Guest VA: 00000016f6b68000
[z fiost 14 ORGE7f137%aLcE0d Host VA: 00007f19f9a0f000 Guest VA: 00000016f6805000
(251 fost WA e 37Sa e Host VA: 00007f19f9al10000 Guest VA: 0000001664a3000
(5 1 V4 O8667F1073al:008 Host VA: 00007f19f9a11000 Guest VA: 00000016f6140000
s fost WA RET157%a10600 Host VA: 00007f19f9a12000 Guest VA: 00000016f5dde000
s fost 1A e 57%a 0600 Host VA: 00007f19f9al3000 Guest VA: 00000016f5a7c000
s fiost 14: ORee7197%a1 7609 Host VA: 00007f19f9al14000 Guest VA: 000000165719000
iz Fost 14 ORGAT97Sa15609 Host VA: 00007f19f9a15000 Guest VA: 00000016f53b7000
(251 fost WA e 37Sa 5600 Host VA: 00007f19f9al16000 Guest VA: 000000165054000
(5 fost WA e 37Sa1 4600 Host VA: 00007f19f9al7000 Guest VA: 00000016f4c 2000
s t V4 O8667F1073al3008 Host VA: 00007f19f9a18000 Guest VA: 000000164990000
s fost 1A e 57%a1 1609 Host VA: 00007f19f9a19000 Guest VA: 00000016f462d000
(s fiost 14: ORGE7157%a11603 Host VA: 00007f19f9alat00 Guest VA: 0000001642cb000
iz Fost 14 ORGAT97Sa16609 Host VA: 00007f19f9alb000 Guest VA: 00000016f3f68000
ies et Vh: QBETFOSaRTE Host VA: 00007f19f9alc000 Guest VA: 00000016f3c06000
s fost WA 71 37Sahold Host VA: 00007f19f9ald000 Guest VA: 00000016f38a4000
s Host 1L ORGRTG7EaRoE Host VA: 00007f19f9ale000 Guest VA: 00000016f3541000
s st VA OB6A7F15fEaRc008 Host VA: 00007f19f9al f000 Guest VA: 00000016f31df000
s Host VA OBBG7F15fSa00008 Host VA: 00007f19f9a20000 Guest VA: 00000016f2e7c000
s ot V4 GBEETFO7Sa850 Host VA: 00007f19f9a21000 Guest VA: 00000016f2blad00
st L Host VA CRGGTFLSFa0L50 Host VA: 00007f19f9a22000 Guest VA: 00000016f27b8000
iest UN: EGOBGIGTTAOGRRD Host A: CBBEPFIOFSaAIEM Host VA: 00007f19f9a23000 Guest VA: 0000001612455000
st L: ORGOBOAFROERMR Host VA: DAGOTFILTSIN Host VA: 00007f19f9a24000 Guest VA: 00000016f20f3000
g size i5 2. Host VA: 00007f19f9a25000 Guest VA: 00000016f1d90000

. Host VA: 00007f19f9a26000 Guest VA: 00000016f1a2e000

st 1A: EORBRIGTERIGONR Map size is 32.

(c) (d)

FIGURE 21: Output of TLB and page table testing. Searching entries in (a) empty page table, and (b) page

table having valid entries. (c) whole page table with valid translation. (d) : reverse mapping of page table.

47

7.4 OUTPUT OF CIU TESTING

Artificial UART registers are read to test the code. UART registers were set to see the effect on
the 10, 11 and 12 bits of cause register. If Interrupt ID (1I1D) field of IIR is 1 than there is no
pending interrupt request. Otherwise, it represents the ID of pending interrupt. In actual system
enable register is set by the system but here we are setting it explicitly. The cause register is
initialized with garbage value every time because CIU will only change the 9, 10 and 11 bits of

cause register.

In source code of figure 22, mio uart0 IIR register is set to 6 to show that “Receiver line status”
interrupt is present. Similarly, mio_uartl IIR register is set to 1 to represent no interrupt. Only
coreO's enable register is set. And all the other cores have disabled the hardware interrupts.
Output for core 0 in figure 22 shows that initially cause register is initialized by a garbage value.

="
& main.cpp *
E_ Source History &~ A L T R O T L O = B
o
% | 12 @ int main() {
| 3 uint&4 t mio_uart@ iir=6, mio_uartl iir=l;
w14 uint64 t cause[12];
|15 CIU ciu;
0] 18 int iid@= 0, iidl1=0;;
17
18 ciu INT ENG[O] .set UARTG EN(1);
19 © [onR¥)
200 -
21
L2 output *

{ |

CIU (Build) % | CIU (Build, Run) % | CIU (Run) %
> Core O
=] cause before 7fb79fB86ac8

int_sum@ 400000000

int_en0® 400000000

int sumd4 400000600

int_end4 0 0

cause after 7fb79fB866c8

Core 1

cause before 7fb79f8BB6770

int_sum@ 400000000

int_end @

int_sum4 400000000

int_en4 0 @

cause after 7fb79f886370

FIGURE 22: Output of CIU. No pending interrupt on core 1

48

The summary register's 34th bit (uart 0) is set, making it 400000000. Corresponding 34th bit in
enable register is also set, which means that the 9th bit of cause will be set. The enable register
for 10th and 11th bit are zero, so cause bits would be cleared. Initially the xxxxxxxx6ac8 is
changed to xxxxxxxx66¢8 by setting 9th bit and clearing 10th and 11th bit. For core 1, as none of
the enable registers are configured so three bits would be cleared i.e. xxxxxxxx6770 changes to

XXXXXXXX6370.

In figure 23, uart0 has no interrupt and uartl is receiving an interrupt with id 6. For core0, bit 9
and 10 of enable register is set and cause register is get initialized with garbage value. As
summary register shows the presence of an interrupt and bit 35 is set, it means that uartl
interrupt is present. Its enable register should also be set for uartl, in order to pass on the pending
interrupt. Hence, bit 9 and 11 will be cleared and bit 10 will be set for core 0 i.e. xxxxxxxxdac8
changes to xxxxxxxxcac8 in the output. For corel, nothing is enabled so all three bits would be

cleared i.e. xxxxxxxxd770 changes to Xxxxxxxxc370.

ﬁ . |
] main.cpp *

E"‘ Source History - S LS R P = S = U R
£ |13 uint64 t mio_uart@ iir=1l, mio_uartl iir=6;|
bel | 14 uintE4 t cause[12];
wm | 15 CIU ciu;
= | 186 int iide= @, iidl=0;;
Iy 17
18 ciu.INT ENG[O] .set UARTO EN(1);
19 ciu.INT ENG[1].set UART1 EN(1);
20
21
22 for (int 1=0;i<24;i=i+2){
23 rotes"Cnro Yeelint I M1 S e 0 .
|
L& output ¥

{ 1

CIU (Build) * | CIU (Build, Run) % | CIU (Run) X
W [core 0
g |cause before 7f2b5b78dac8

int_sum@ 800GGEGCO

int_en@ 400000000

int_sum4 8000CEEC0

int_en4 0 0

cause after 7f2b5b78cach

Core 1

cause before 7f2b5b78d770

int_sum@ 800EEEEE0

int_en@ @

int_sum4 800GGEEG0

int_en4 0 @

cause after 7f2b5b78c370

FIGURE 23: Output of CIU. No pending interrupt on core 0

49

7.5 OUTPUT OF HYPERVISOR CONSOLE

During execution, if UART’s memory mapped registers are written by the core, UART display it
in on the console. To validate virtual execution of binaries, hypervisor console output (e.g.
shown in Figure 24) was compared with that of real host system console. (For complete log

please look at the VM booting log file attached)

U-Boot 1.1.1 (Development build) (Build time: Nov 6 2014 - 10:00:04)

BIST check passed.

Warning: Board descriptor tuple not found in eeprom, using defaults

EBH5610 board revision major:1, minor:0, serial # unknown

OCTEON CN5620-NSP pass 2.0, Core clock: 0 MHz, DDR clock: 0 MHz (0 Mhz data rate)
DRAM: 1024 MB

Clearing DRAM........ done

Flash boot bus region not enabled. skipping NOR flash config

ERROR: No unused memory available in flash

Net: octmgmt0

Bus 0 (CF Card): not available

USB: (port 0) No USB devices found.
Octeon ebh5610#
ELF file is 64 bit
Allocating memory for ELF segment: addr: Oxffffffff84100000 (adjusted to: 0x4100000), size Oxaf4730
Allocated memory for ELF segment: addr: Oxffffffff84100000, size Oxaf4780
Processing PHDCR 0
Loading aBccB0 bytes at ffffffff34100000
Clearing 67b00 bytes at ffffffff84b8cc80
Loading Linux kernel with entry point: Oxffffffff34105bd0 ...
Bootloader: Done loading app on coremask: Oxfff
Started core 1
AssemblytoC addr = 0x000000012001581c
Linux version 2.6.32.13-Cavium-Octeon (root@localhost.localdomain) (gec version 4.3.3 (Cavium Networks Version: 2_0_0 build 95)) #168
SMP Thu Nov 13 09:44:12 PKT 2014
CVMSEG size: 2 cache lines (256 bytes)
Cavium Networks SDK-2.0
bootconsole [early0] enabled
CPU revision is: 000d0408 (Cavium Octeon+)
Checking for the multiply/shift bug... no.
Checking for the daddiu bug... no.
Wasting 0x103e38 bytes for tracking 19009 unused pages
Initrd not found or empty - disabling initrd
DMA32 (0x00004a41 -> 0x00100000
Normal 0x00100000 -> 0x0041fc00
Movable zone start PFN for each node
early_node_map[5] active PFN ranges
0: 0x00004a41 -> 0x00004b90
0: 0x00004c00 -> 0x00008000
0: 0x00008200 -> 0x0000fe00
0: 0x00020000 -> 0x00040000
0: 0x00410000 -> 0x0041fc00
Cavium Hotplug: Available coremask 0x0
PERCPU: Embedded 10 pages/cpu @aB800000005ab3000 s11392 r8192 d21376 u65536
pcpu-alloc: s11392 r8192 d21376 ub5536 alloc=16*4096
pcpu-alloc: [0] O [0] 1
Built 1 zonelists in Zone order, mobility grouping on. Total pages: 182112
Kernel command line: bootoctlinux console=ttyS0,115200
PID hash table entries: 4096 (order: 3, 32768 bytes)
Dentry cache hash table entries: 131072 (order: 8, 1048576 bytes)
Inode-cache hash table entries: 65536 (order: 7, 524288 bytes)
Primary instruction cache 32kB. virtually tagged. 4 way, 64 sets, linesize 128 bytes.
Primary data cache 16kB, 64-way, 2 sets, linesize 128 bytes.

FIGURE 24: Booting log of hypervisor

50

8 PERFORMANCE OPTIMIZATION

Virtualization solutions are notorious for performance bottlenecks. To optimize performance of
hypervisor and guest code, it is necessary to find these bottlenecks to tune code for performance

improvement.

8.1 PERFORMANCE TUNING

First step in performance tuning is to identify the most time consuming functions of hypervisor
code that are called during execution of guest code. We collected running time of all called
functions to identify the hot spots in code. Each function is optionally instrumented to introduce
time keeping code at the start and end of each function code. It gives us total time consumed by
the function. Total time of a function also includes the time consumed by the functions called by
this function. Net (or self) time is then calculated by subtracting the total time consumed by all
callees, from the total time of caller function. Another important performance metric is the call
count of a function i.e. how many times a function is called. Sample output of sorted flat profile
of hypervisor is shown in Table 1. The data shows that address translation is taking much more

time as compared to other functions and it should be optimized.

TABLE 1: SORTED FLAT PROFILE BEFORE OPTIMIZATION (SHOWING MOST TIME
CONSUMING FUNCTIONS ONLY).

Count Function Name Net Time Total Time
(sec) (sec)
49107203 | MMUTranslator::GVAtoGPA 2326.3283 4572.8963
29513958 | BlockExecController::fetchnPlaceBlock 2283.8921 3057.8145
50000001 | BlockExecController::handleRequest 1836.5265 5972.9834
49107203 GPAtoHVATranslator::GPA_to HVA 1221.9575 1511.028
49107203 | MMUTranslator::verify_priviliges 1063.2158 1378.4329
49107203 GVAtoHVATranslator::GVAtoHVA 852.3648 5487.4371
47218428 | MMUTranslator::look_staic_translation_32bit 789.6234 896.4091

51

Software Cache Implementation: To optimize address translation, we implemented a
translation cache. Once we translate an address, we place it’s translation in translation cache and
when next time translation for that address is required we don’t need to repeat all steps to get
translation. We can directly convert Guest Virtual Address (GVA) to Host Virtual Address
(HVA) using this cache. Whenever we need translation for address, we call
GVAtoHVATranslator::GVAtoHVA. First it checks whether translation is present in cache. If
present, it will directly get translation from cache otherwise GVA is converted to Guest Physical
Address (GPA) and then GPA is converted to HVA.

After this optimization, we generated sorted flat profile again. It shows significant performance
improvement in MMUTranslator::GVAtoGPA, as shown in Table 2. Due to this optimization,
we do not need GVA-to-GPA and GPA-to-HVA translation frequently and lead to reduction in
call count. Reduction in call count of MMUTranslator::GVAtoGPA significantly reduces its total

time.

In-Place Block Execution: Although using cache has shown its advantage but it was not quite
enough. Changing some code level implementations and applying In-place block execution had
proved more beneficial. Given below is current improved timing profile of the hypervisor. As we
have eliminated the block copying step, fetchnplaceBlock has reduced the time dramatically.

TABLE 2: SORTED FLAT PROFILE AFTER SOFTWARE CACHE IMPLEMENATTION

Count Function Name Net Time Total Time
(sec) (sec)
29513958 | BlockExecController::fetchnPlaceBlock 2283.8921 2780.8145
50000001 | BlockExecController::handleRequest 1804.6144 4351.9108
49107203 | GVAtoHVATranslator::GVAtoHVA 742.5720 1468.1078
49106050 | GVAtoHVATranslator::Check_cache 449.7157 449.7157
35715 MMUTranslator::GVAtoGPA 1.306426 2.650513
35716 GPAtoHVATranslator::translate_ GPA_to HVA 0.270219 0.270219
26628 MMUTranslator::look_staic_translation_32bit 0.178782 0.310867

52

TABLE 3: SORTED FLAT PROFILE AFTER IN-PLACE BLOCK EXECUTION IMPLEMENATTION

Count Function Name Net Time

(sec)
215982611 Processor_IPE::handleRequest() 14.03
124936958 Processor_IPE::fetchNextBlock() 12.65
124936958 TranslatedBlockCache_IPE::doesExists() 9.77
39934396 TransInsAllocator<unsigned int>::construct() 7.64
86515038 Processor_IPE::handleLDST() 6.82
215982610 Processor_IPE::C2Assembly2C() 6.77
87261169 Processor_IPE::incrementTrapCount() 6.22

8.2 PERFORMANCE IMPROVEMENTS

For improving performance we have made some changes on code implementation level and also

in the hardware used. The improvements are mentioned in detail below.

8.2.1 CODE STRUCTURAL ENHANCEMENT

Previously, we were using some C++ standard STL containers for performing many operations.
But they were time consuming. A considerable numbers of calls to these STL containers were
deteriorating our performance. Using non-standard implementation has improved the overall

timing of system.

IN-Place Execution: Initially, we were using C++ standard vector to store translated block (host
executable instructions). Before execution we have to relocate this translated block onto a
predefined memory place. This memory to memory copying takes some time, which increases
the execution time almost double. To avoid this memory-to-memory unnecessary coping, we
need to execute the translated block in vector. But we cannot do so because of unavailability of
execution rights on vector. Alternatively, we implemented an allocator for vector so that

execution rights of vector can be changed and block can be executed directly without copying.

Using Non-Standard C++ Hashmap: We were using C++ standard hashmap to store the TCBs
(Translated Cache Block) and GVAtoHVA (Guest-Virtual-Address to Host-Virtual-Address)
translated Addresses. A TCB is a set of host executable instructions got after translation of guest

executable instructions. It is stored into a key-value pair hashmap. The “key” to search into

53

hashmap is a 64 bit virtual address, which is a starting address of TCB in terms of guest virtual
address and “value” against that key is a TCB. This hashmap is used for reusability of TCBs.
whenever a translated cached block is required again for execution, it can be directly used after
obtaining from hashmap container if the corresponding “key” of TCB is matched. Thus, there is
no need to re-fetch and retranslate the required guest’s instruction block again. Theoretically, by
doing so there should be an improvement in performance but in practice it significantly reduced
the timing efficiency. Most of the time is wasted during searching the required TCB in the
hashmap container. To resolve this problem, we used an array and implemented an efficient
hashing function to find the index of required TCB quickly into the hashmap container. This
made the cached block searching timing efficient. Similar mechanism is applied for GVAtoHVA

address translation.

Custom Vector for Translated Block: Previously, C++ standard vector was used. Standard
vector uses STL containers and insertion and retrieval for entries in it are very costly due to the
fact that standard classes do lot of book-keeping for operations and these book-keepings are of
no use for us. To avoid this, we implemented a container to hold translated instructions. It is in
fact a memory mapped block of 4 Kilobytes with some insertion and retrieval operations. If
translated instructions become greater than 4 kilobytes we double the size of block and so on.

This reduced the implementation time by 3 minutes.

Macros: For encoding different type of translated instructions, each type of instruction class
creates an object. This object calls its own encode function to make an instruction. After
encoding translated instruction the object is destroyed, as it is a local object. This object creation
and destruction is performed for each instructions translation and consumes time. These
encoding functions were replaced with macros, performing the same functionality. So object

creation was avoided by macros. This has reduced the execution time by roughly 15 min.

8.2.2 HARDWARE PLATFORM

A significant improvement in time was observed when evaluation board was changed.

The older evaluation board has the following specifications:

54

TABLE 4: SPECIFICATION OF OLD EVALUATION BOARD

Number of Processors 16

RAM 2GB

TLB_entries 32

CPU Model Cavium Octeon 11 V0.3

The new evaluation board has the following specifications:

TABLE 5: SPECIFICATION OF NEW EVALUATION BOARD

Number of Processors 12

RAM 8GB

TLB_entries 128

CPU Model Cavium Octeon 11 VV0.10

8.3 POTENTIAL FUTURE OPTIMIZATION

Various other optimizations are also possible to avoid performance degradation of code executed
in virtual environment. We have plans to implement few promising techniques along the course
and their effect will be available in the future deliverables. Here we briefly describe the potential

optimization techniques.

8.3.1 BLOCK LINKING
In-place execution also necessitates the linkage of blocks so that guest code could follow the
intended execution path of code. It is expected to improve the performance due to less

intervention of hypervisor.

8.3.2 COMPILER LIKE TRANSLATION OPTIMIZATION

In current implementation of hypervisor, execution context is confined to single instruction of
the block. Data produced/consumed by the instruction is updated immediately. On the other
hand, compilers often have a broader vision and do not update data immediately if it is going to
be consumed by some following instruction(s). We may opt for this optimization in future

deliverables.

55

8.3.3 DATA TLB CHECKING IN EPILOGUE
Moving data TLB checking to the epilogue of a block is likely to reduce the C-assembly code
jumps. Software exception handling is expensive and this optimization could lead to infrequent

software exceptions.

8.3.4 STATIC ANALYSIS AND MODIFICATION
Preprocessing of guest binaries by static analysis is likely to reduce the runtime overhead. Static
code modifications could avoid block translation at runtime. However, there are some corner

cases that could only be handled until we have the runtime information.

8.3.5 PERFORMANCE COUNTER MONITORING

Instead of using instrumentation of functions, we could fine tune performance using performance
monitoring unit (PMU) of modern hardware. The real challenge of this optimization is to select
the most appropriate performance counters. A deep system level understanding is required to

collect and analyze the data collected using performance counters.

8.4 CORRECTNESS RELATED BUG FIXES

e Implementation of atomic instructions: Some of the instructions were not translated
correctly before. Instruction like LL and SC implements atomic load and store operations.
They require a lock for its correct implementation. MADD (multiple and add) instruction
requires the loading of host’s special lo and hi registers before its execution.

e Flushing data cache: Hypervisor was showing unexpected behavior by suddenly
crashing the program randomly during its execution. But if we add a system call after
specific intervals, hypervisor shows the correct execution of the system. This illogical
behavior was due to the fact that we were using data memory as an instruction memory in
hypervisor code. When data (guest code) is used as an executable instruction then data
and instruction caches interleaves with each other, producing illogical results. We
resolved this issue by flushing the data cache in hypervisor code whenever we needed to
execute a new guest block.

e Page boundary detection in block fetching: In user mode, program may or may not be
loaded contiguously. For example if virtual page number 0x120001 is mapped to physical

frame number 0x41A36C then virtual page number 0x120002 may or may not be present

56

at physical frame number 0x41A36D. Our previous implementation of block fetching
mechanism was on the assumption that memory is contiguous i.e. virtual page number
0x120002 will be present at physical frame number 0x41A36D. But normally this is not
the case and this causes fetching of illegal instructions. To avoid this, we implemented a
check for page boundary. If block is spanned over boundary of a page then we fetch only
part of block which is present in first page and we process remaining part in next fetch

cycle. This resolved the unusual kernel crashes.

9 IMPACT ON PROJECT PROGRESS

We had a hard time identifying some tricky bugs in design. These bugs caused unusual kernel
crashes. Source of memory corruption is hard to identify. But along with assigning IP address to
the guest network interface, we have also put some effort in reducing the booting time. For that
we had to change the timer infrastructure completely. Over all this effort has a positive impact on

project progress.
References

[1] Cavium Networks OCTEON Plus CNb54/5/6/7XX, Hardware Reference Manual
CNb54/5/6/7XX-HM-2.4E, January 2009, chapter 14 (CIU).

57

