

Development of Type-2

Hypervisor for MIPS64 Based

Systems

May 1

2015
[9th Deliverable]

This document is version 8 of first report and includes the

implementation details of current deliverable of “Development

of Type 2 Hypervisor for MIPS64 based Systems” project,

funded by National ICT R & D Fund Pakistan. The report starts

with brief description of project objectives, technical details of

our approach, challenges and their solutions. Complete

description of testing infrastructure, test cases and test results

are discussed later on. The report concludes with the impact of

current deliverable on the overall project progress.

Test Cases

Result Report

High Performance Computing and Networking Laboratory HPCNL

Al-Khwarizmi Institute of Computer Science, University of Engineering and Technology Lahore Pakistan

TABLE OF CONTENTS

1 Project Description .. 1

2 High Level Design .. 2

3 Implementation Strategies .. 3

3.1 Instruction Level Execution Model... 3

3.2 Block Level Execution Model .. 4

4 System Development .. 5

4.1 Memory Management Unit (MMU) ... 5

4.1.1 GVA to GPA Translation .. 7

4.1.2 GPA to HVA Translation .. 7

4.1.3 Page Table .. 7

4.1.4 Translation Look-aside Buffer (TLB) .. 8

4.1.5 Bugs Fixed in TLB ... 8

4.1.6 Cavium Segment Implementation .. 9

4.2 MIPS Instruction Set Translation... 9

4.2.1 Privileged Instructions .. 10

4.2.2 Unprivileged Instructions .. 11

4.2.3 Cavium Specific Instructions .. 13

4.2.4 Branch and Jump Instructions ... 15

4.2.5 Control Shifting Instructions .. 18

4.2.6 Special Instructions ... 19

4.2.7 Examples of Translation ... 19

4.3 Software Cache ... 20

4.3.1 Cache Storage ... 21

4.3.2 Searching a Block .. 21

4.3.3 Block Retrieval ... 21

4.3.4 Replacement policy .. 22

4.3.5 Bugs fixed in Address cache .. 22

4.4 Timer Unit .. 22

4.4.1 Continuous Tick Timer ... 23

4.4.2 On-Demand Tick Timer .. 24

4.5 Interrupt and Exception Handling ... 26

4.5.1 SIGFPE: Floating point exception handling ... 28

4.5.2 SYSCALL: System call handling ... 28

4.5.3 TLB and Address error Exception Handling .. 28

4.5.4 Modification in Exception Handling .. 29

4.5.5 External Interrupts .. 29

4.5.1 CTRL+C signal for guest .. 29

4.6 SMP Support .. 29

4.6.1 Inter-Core Communication Through CIU .. 30

4.7 IO Device Management ... 32

4.7.1 UART .. 32

4.7.2 Central Interrupt Unit (CIU) .. 35

5 Virtual Disk .. 37

6 Testing Infrastructure ... 38

6.1 Test cases ... 39

6.1.1 Matching System states ... 39

6.1.2 Execution Path ... 39

6.1.3 Comparing Console Output .. 40

6.1.4 Progress .. 40

6.2 Testing with SMP Support .. 40

6.3 Booting with customized minimal initramfs file .. 40

6.4 Virtual Ethernet Card Detection .. 41

6.5 Assigning a Valid IP to guest ... 41

7 Test Results .. 43

7.1 Output of System State Matching Test ... 43

7.2 Output of Execution Path Test .. 44

7.3 Output of TLB Testing .. 44

7.4 Output of CIU Testing ... 48

7.5 Output of Hypervisor Console .. 50

8 Performance Optimization.. 51

8.1 Performance Tuning .. 51

8.2 Performance Improvements .. 53

8.2.1 Code Structural Enhancement ... 53

8.2.2 Hardware Platform.. 54

8.3 Potential Future Optimization .. 55

8.3.1 Block Linking ... 55

8.3.2 Compiler like Translation Optimization .. 55

8.3.3 Data TLB Checking in Epilogue ... 56

8.3.4 Static Analysis and Modification .. 56

8.3.5 Performance Counter Monitoring .. 56

8.4 Correctness related bug fixes .. 56

9 Impact on Project Progress ... 57

TABLE OF FIGURES

Figure 1: Multithreaded design of Type-2 hypervisor ... 2

Figure 2: Instruction level execution model .. 4

Figure 3: Block level execution model .. 6

Figure 4: Code Snapshot of Mtc0's Translation ... 19

Figure 5: Code Snapshot Of Sll's Translation .. 20

Figure 6: Continuous Tick Timer Implementation .. 24

Figure 7: Design Diagram of Two Timer Strategies ... 25

Figure 8: Exception handling in user mode ... 27

Figure 9: Code snippet showing the emulation of exception handling .. 28

Figure 10: Multithreaded view of hypervisor and external devices ... 30

Figure 11: Execution flow of hypervisor with SMP .. 31

Figure 12(a): (ciu) Interrupt distribution from external devices to core .. 36

Figure 13: Memory mapping between core and external devices .. 37

Figure 14: RAM disk Implementation in Hypervisor .. 38

Figure 15: Booting Log of Hypervisor, Showing the Detection of Ethernet ... 42

Figure 16: Guest's Network Interfaces... 42

Figure 17: Output of system state matching test .. 43

Figure 18: Output of execution path test ... 44

Figure 19: Searching for random TLB .. 45

Figure 20: TLB entries in TLB table ... 46

Figure 21: Output of TLB and page table testing. ... 47

Figure 22: Output of CIU. No pending interrupt on core 1 ... 48

Figure 23: Output of CIU. No pending interrupt on core 0 ... 49

Figure 24: Booting log of hypervisor .. 50

1

1 PROJECT DESCRIPTION

The main objective of this project is to develop an open source Type-2 hypervisor, for Linux-

based MIPS64 embedded devices. Type-2 means that it is a hosted hypervisor which runs on

MIPS64 based Linux systems as a Linux process. It is intended that the hypervisor will (1)

support installation and execution of un-modified MIPS64 Linux guest(s) on un-modified

MIPS64 Linux host (2) take advantage of virtualization for improved hardware utilization and

performance optimization, by using multiple MIPS cores. Our focus on MIPS is due to the fact

that MIPS based systems are lagging behind in the use of virtualization. One of the reasons is

that many MIPS based processors are used in low end consumer devices like TV set top box,

GPS navigation system and printers. There isn’t a clear cut use case for virtualization here. But

few of the MIPS vendors target higher end embedded devices like network switches and routers,

GSM/LTE base station equipment and MIPS based blade servers. There are clear-cut

virtualization use cases for this higher-end MIPS segment.

The development started on April 1, 2013 and first deliverable was due after 3.5 months i.e.

July 15, 2013. In first deliverable, we built the required infrastructure. The infrastructure printed

guest kernel banner on console at the end of 1st deliverable. Second deliverable was due after 6.5

months of commencement data i.e. October 15, 2013. The milestone in 2nd deliverable was the

dynamic code patching of one sensitive guest instruction with one safer instruction. In 3rd

deliverable, dynamic code patching was augmented by implementing cases where one sensitive

instruction is replaced by more than one instruction. In 4th deliverable, dynamic code patching

was applied on demand. In 5th deliverable, guest kernel booting completes and starts creating

user mode processes. In 6th deliverable, SMP support was added to whole infrastructure and

many performance related bugs were fixed. In 7
th

 deliverable major units like Timer and UART

were added, in code. Exception and interrupt handling mechanism was further developed. Bugs

related to memory implementation and instruction execution were fixed. In 8
th

 deliverable,

virtual disk implementation was added to the infrastructure. Also Ethernet card detection inside

the guest has been done. There were some bug fixes related to timer, TLB and exception

handling mechanism. In 9
th

 deliverable, a valid IP was assigned to the guest. Timer infrastructure

was changed due to bad performance. Many TLB and UART related bugs were fixed. An error

2

in block fetching mechanism was identified and corrected. Some code structural changes were

done for improving timing performance of hypervisor. Ctrl+C implementation was provided by

hypervisor for killing guest processes.

2 HIGH LEVEL DESIGN

Type-2 hypervisor behaves like an ordinary Linux process that could be scheduled by host

operating system. However, this process has to present a holistic view of virtual hardware for

guest operating system(s) to run on it. Virtual hardware consists of software representations of

CPU cores, memory and peripheral devices. In real hardware, CPU cores and devices work

concurrently and could be considered as processes or threads in software representation.

Multiprocessing requires inter-process communication (IPC) whereas multithreading could be

implemented using the shared address space. Each one has its own pros and cons. We selected

multithreaded design for our hypervisor, as shown in Figure 1. It shows that each core and device

is a separate thread. Central interrupt unit (CIU) is another thread that dispatches pending

interrupts to the cores using mapped memory.

FIGURE 1: Multithreaded design of Type-2 hypervisor

3

3 IMPLEMENTATION STRATEGIES

Primarily, we have experimentally implemented two different strategies to develop Type-II

hypervisor. Firstly, we implemented an instruction level strategy. This strategy is very simple

and easier to implement but it greatly reduces time efficiency in order to boot a guest OS because

we take trap and then emulate every instruction of the guest OS. It also demands a lot of

programming effort because we have to provide almost all MIPS ISA functionality

implementation in our hypervisor code. Secondly, on the other hand, we also implemented a

block level technique for the execution of guest OS. Because in this strategy, we fetch and

translate a set of instructions at a time instead of a single instruction emulation that’s why it can

be considered a better and faster approach form the previous strategy. We discussed both

implementations as follows.

3.1 INSTRUCTION LEVEL EXECUTION MODEL

It is a very simple mechanism to execute a Guest executable binary on the hypervisor. In this

strategy, when executable guest OS is loaded then we patch all instructions of the guest OS

binary with a trap-call instruction and original instructions are placed into a lookup table (hash-

table). Patching means an instruction is replaced with another instruction, which is caused to

generate a trap during its execution. By doing so, when the control is shifted on the guest

application binary for its execution then we get a signal from the hardware on each instruction

because of its patching. This signal is catch by the signalHandler into the hypervisor code, a

method which is able to catch signal generated by the hardware. Now the control comes back to

our hypervisor code and we can emulate the corresponding instruction into our software based

environment also called a virtual environment. In software based environment, we actually have

a complete soft image of MIPS’s processor.

We have all GP (General Purpose) registers, CP0 registers, TLB, CIU and exception

handling mechanism in our software based environment, which is provided by the hypervisor to

the guest operating systems for their execution.

4

FIGURE 2: Instruction level execution model

3.2 BLOCK LEVEL EXECUTION MODEL

This strategy is very much different from the above mentioned strategy because it provides block

level instruction emulation instead of instruction level trap & emulation mechanism. A block

consists of a set of instructions having only one jump/branch instruction as a second last

instruction. In this strategy, we actually fetch a block from a corresponding PC address of the

guest OS loaded binary and then translate this block. Each instruction in the block fetched from

Guest binary is translated into a number of instructions, which are executable on the host

machine. The translated instructions are composed in the same order as the original instructions

are given in the Guest binary block to preserve the correct behavior of instructions. The

translated block is then placed into a Cache-blocks for future reusing purpose so that if the same

block is required again then no need to fetch again and retranslate that block if it’s available in

5

the Cache-blocks. After block translation we execute it by just placing the starting address of this

block into PC register so that this block can be executed.

During execution a block, the control may come into hypervisor code in case of address

translation from guest virtual address to host virtual address or any other interrupts or for log

files writing purpose. The first block in fetched from the guest virtual reset vector 0xBFC00000

address and then it is translated and after its translation, it is placed into some fixed location

memory where control is then shifted at that memory location for the execution of translated

block. When whole the execution of translated block is completed, the control comes back into

the hypervisor code for fetching the next block. Now, we first check whether the new required

block is available into Cache-blocks or not. If it is found in the Cache-blocks then it doesn't need

to fetch again and retranslate the required block because the Cache-blocks already have this

translated block into it. The control is just placed on the new block, which has been found into

the Cache-blocks. Alternatively, if required new block doesn't found into the Cache-blocks then

it is fetched, translated and also cached into the Cache-blocks. The Cache-blocks may contain

some fixed number of translated blocks into it when it becomes full then one block from it, is

replaced by new translated block based on some replacement policy. Figure 3 shows the flow

chart of block level execution model of hypervisor.

4 SYSTEM DEVELOPMENT

The whole infrastructure of the hypervisor is divided into modules. The implementation

functional description of each unit is given detail below.

4.1 MEMORY MANAGEMENT UNIT (MMU)

It is the most important unit of a computer system. The purpose of memory management unit is

to translate virtual addresses to physical addresses. For virtual address translation, some rules are

already defined by physical hardware and we implemented these rules in software to provide the

virtualization of MMU used by guest operating system(s). In case of hypervisor, it is used to

translate GVA to HVA. To translate GVA to GPA, we use same method as used by the

hardware. For translation of GPA to HVA, we use hash map to store information of all regions

mapped in host virtual address space.

6

FIGURE 3: Block level execution model

7

4.1.1 GVA TO GPA TRANSLATION

MIPS64 architecture supports both 32-bit and 64-bit Addressing modes. In 32-bit addressing

mode, address segment is defined by upper 3 bits (i.e. bits 32-29) of virtual address. If these bits

are 100 then it is kseg0 region. It is directly mapped to physical memory. If these bits are 101,

address is from kseg1 region and this is also directly mapped to physical memory. In both

previous cases, lower 20 bits represent physical address. For 110, region is ksseg. This is not

directly mapped and we have to search for it in TLB for address translation. For 111, region is

kseg3 which is not directly mapped and we have to search TLB for valid entry to translate the

address. If these bits are 0xx then it is useg. Translation for useg is slightly different. If ERL bit

of status register of CP0 is set then useg is directly mapped to physical memory. If ERL bit is not

set then we have to check TLB to get physical address.

In 64-bit addressing mode, address segment is defined by upper 2 bits (i.e. bits 63-62) of

virtual address. If these bits are 10, then this is xkphys region which is directly mapped to

physical memory or I/O devices. If 49th bit of virtual address is 0 then it is memory access and

lower 29 bits represent physical address of memory. If 49th bit is 1 then it is I/0 address and data

is load/store from respective device. If these bits are 11 then it is xkseg region which isn't

directly mapped and we have to search TLB for valid address translation. For 01, region is xsseg

which is also to be searched in TLB for translation. For 00, region is xuseg. If ERL bit of status

register of CP0 is set then it is directly mapped otherwise TLB translation would be required.

4.1.2 GPA TO HVA TRANSLATION

All physical memory regions of a machine are mapped in virtual address space of hypervisor.

Once we get the valid translation for GVA, we have to translate that physical address to HVA in

order to access valid data. After getting valid physical address, we found the memory region or

I/O device to which it belongs. We simply find HVA for required memory region or I/O device

using hashmap. Once we get a valid GVA-to-HVA translation, we can simply execute the

respective instruction.

4.1.3 PAGE TABLE

In MIPS no physical page table is provided by hardware and page table is solely managed by

operating system. Hence, there is no need to implement page table.

8

4.1.4 TRANSLATION LOOK-ASIDE BUFFER (TLB)

TLB is a cache used to speedup virtual address to physical address translation. In case of type 2

hypervisor, TLB translates GVA to HVA. There are four basic TLB functions: probe, read,

write-random and write-index. TLB probe searches for a TLB entry using the value of EntryHi

register of co-processor 0 (CP0). If valid entry is found, it places index of TLB entry in CP0

index register, otherwise it sets probe bit of index register and consult page table. TLB read gets

value from CP0 index register and checks the validity of data at this index. If data is valid, the

components of entry (i.e. entryHi, entryLo0, entryLo1 and page-mask) are moved to

corresponding CP0 registers. Otherwise TLB read raises invalid data exception. TLB write-

random gets index of TLB entry from CP0 random register and checks the validity of data at the

index. If entry is dirty, it raises dirty data exception, otherwise it writes corresponding values of

CP0 registers (i.e. entryHi, entryLo0, entryLo1 and page-mask) to the TLB entry at that index.

TLB write-index works same as TLB write-random except that it gets index value from CP0

Index register.

On TLB miss or TLB Mod exception, we jump to the exception handler entry point from

where the kernel determines which kind of exception it is and service the exception.

4.1.5 BUGS FIXED IN TLB

 TLB Restructuring: TLB structure and searching mechanism is modified to

accommodate changes related to core mask. At boot time when control passes from u-

boot to Linux kernel, core mask is changed which caused TLB exception in previous

implementation and kernel crashes but on such thing happens on actual hardware. Some

debugging revealed that searching mechanism on hypervisor is slightly different from

hardware. In order to search TLB entry, hardware uses pagemask of each entry placed in

TLB instead of using pagemask value of CP0 register.

 Reserved Bits for TLB Registers: Some bits for EntryHi, EntryLo and Pagemask

registers are reserved and shouldn’t be changed by the guest operating system. Changing

these bits can cause problem in translation of virtual address and sometimes cause kernel

crash. Masking of such reserved bits was provided for correct virtual address translation

mechanism.

9

4.1.6 CAVIUM SEGMENT IMPLEMENTATION

CVMSEG is cavium specific memory segment. CVMSEG resides in KSEG3 region and all

memory reference in address range 0xFFFFFFFFFFFF8000 - 0xFFFFFFFFFFFFBFFF are

treated specially by MIPS core. Access to this segment is controlled by setting

CvmMemCtl[CVMSEGENA*] flags and size of this segment is controlled by

CvmMemCtl[LMEMSZ] field. CVMSEG has two portions

1- CVMSEG LM = 0xFFFFFFFFFFFF8000 - 0xFFFFFFFFFFFF9FFF

2- CVMSEG IO = 0xFFFFFFFFFFFFA000 - 0xFFFFFFFFFFFFBFFF

CVMSEG LM is a segment that access portion of DCache as local memory. Larger the

size of this segment, smaller the size of DCache. CVMSEG IO has only one legal address

0xFFFFFFFFFFFFA200 and store to this address issues IOBDMA command which returns data

from IO bus to CVMSEG.

Operating system normally uses this region as scratch pad memory and register values are

stored at these locations during context switching. Implementation of this region was crucial for

successful booting.

4.2 MIPS INSTRUCTION SET TRANSLATION

MIPS instructions are mainly categorized as R, I and J types. “R” category contains those

instructions which use on gp registers. I types involves an immediate value plus register and J

type has target address field, no registers to manipulate.

 The idea is to not completely emulate the instruction but rather change the registers

embedded in instruction and execute it on hardware as it is. The registers that are replaced are

first loaded with the expected contents. These loading instructions are also written in assembly

language. The complete translation of an instruction will have some loading instructions then the

actual reconstructed instruction and then some storing instructions. Control shifting and flow

control instructions are treated differently.

We have a memory based copy of all registers (i.e. GP, CP and special registers) which

belongs to guest OS. After the execution of particular instruction, guest's registers would also be

updated accordingly. For translating mips instructions into equivalent set of instructions which

10

will produce same results in the registers kept for guest, we use 3 gp registers. The expected

contents (from host’s point of view) of the registers are first loaded in these registers and then

replaced in instruction to be executed. Results are then saved to our memory based registers.

The categories are based on the type of instruction, privileged or unprivileged, how many

registers are used, what is destination register and how the fields are manipulated.

Below are the categories and the instructions included in them are also mentioned.

4.2.1 PRIVILEGED INSTRUCTIONS

Instructions which involve Co-processor 0 registers are privileged instructions and can’t be

executed in user mode. Privileged Instructions are treated separately.

 mfc0: The translated set of instructions will load the contents from particular cp register

and store in the place of destination gp register in the memory.

 mtc0: The translated set of instructions will load the contents from particular gp register

and store in the place of destination cp register in the memory. It also checks whether

destination register is $0 or not. If it is then the instruction is replaced with “nop”. Certain

bits of cp registers are reserved. To avoid over writing them, masking is used.

 tlbr/ tlbwi/ tlbwr/ tlbp: In case of tlb instructions, an integer is placed on a particular

place in the memory and control is shifted back to handlerRequest(). The control mark

indicates the instruction to be handled accordingly.

 di (disable interrupts): First the contents of status register is loaded. If any destination

register is given then the contents of status register is stored at destination register. First

bit of status register is cleared to disable interrupts and the contents are stored in the

status register.

 ei (enable interrupts): First the contents of status register is loaded. If any destination

register is mentioned then the contents of status register is stored at destination register.

First bit of status register is set to enable interrupts and the contents are stored in the

status register.

 eret (exception return): when exception routine end, eret is executed to return to the pc

from where we have received exception. In its implementation we first check whether erl

bit of status register is set or not. If set then error epc is returned, if not then epc value is

returned. The returned value is assigned as next pc to be executed.

11

4.2.2 UNPRIVILEGED INSTRUCTIONS

Unprivileged Instructions are grouped on the basis of their type and functionality.

 unprev_R

◦ All those R-type unprivileged instructions, which use 3 gp registers. 2 source gp

register and one destination gp register.

◦ Includes: baddu, dmul, dpop, pop, or, sllv, dsllv, srlv, dsrlv, rotrv, drotrv, srav, dsrav,

movz, movn, add, dadd, addu, daddu, sub, dsub, subu, dsubu, and, xor, nor, slt, sltu,

mul, wsbh, seb, seh, dsbh, dshd, clz, clo, dclz, dclo, seq, sne (40 total)

◦ First 2 source registers are loaded from memory into register $12 and $13. The

register in the instruction to be translated is replaced with these registers and executed

as it is. The result is stored on the destination memory based gp register.

 shift_R

◦ All those R-type unprivileged instructions, which are shift instruction and the no. of

times to be shifted is encoded in instruction itself (i.e field from bit 6 to 10). 1 source

gp register and 1 destination gp register.

◦ Includes: dsrl, srl, dsll, sll, drotr, rotr, dsra, sra, drotr32, dsll32, dsrl32, dsra32 (12

total)

◦ First source register is loaded from memory into register 12. The register in the

instruction to be translated is replaced with the register and executed as it is. The

result is stored in the destination memory based gp register.

 mulDiv_R

◦ All those R-type unprivileged instructions, which multiple or divide and the

destination registers are special register HI and LO (opposite to mul instruction

included in uprev_R, whose destination is also a gp register) and 2 source gp

registers.

◦ Includes: dmult, mult, dmult, multu, ddiv, div, ddivu, divu, madd, maddu, msub,

msubu (total 12)

◦ First source registers are loaded from memory into registers 12 and 13. The

instruction to be translated is replaced with these registers. After the execution of

12

these instructions the result will be in HI and LO special registers. Mflo and mfhi is

executed after these instructions. The result is stored in the guest's Hi and LO.

◦ For instruction “madd”, HI and LO are registers of the hardware is also updated first

before executing it.

 moveFromLoHi_R

◦ For moving contents from HI and LO special registers into the gp registers, contents

are loaded from HI and LO and saved at the place of destination gp register.

◦ Includes : mflo, mfhi (total 2)

 moveToLoHi_R

◦ For moving contents to HI and LO special registers from gp registers, contents are

loaded from particular gp register and saved at the place Hi or Lo register.

◦ Includes: mtlo, mthi (total 2)

 ext_R (extract)

◦ These are R-type instructions, whose fields are used differently than the previous

categories. Bit 16-20 are used for destination register and bits 11-15 are used for size.

1 gp source and 1 gp destination register is used.

◦ Includes: ext, dextm, dextu, dext, exts, exts32 , (total 6)

◦ Source register is first loaded in register 12. Then instruction to be translated in

executed with 12 and 13 registers. The result in 13 register is stored in the destination

gp register.

 ins_R (insert)

◦ These are R-type instructions, whose fields are used differently than the previous

categories. Bit 16-20 are used for destination register and bits 11-15 are used for size.

1 gp source and 1 gp destination register is used. Similar to extract but the difference

is that destination register is also loaded before the execution of instruction.

◦ Includes: ins, dinsm, dins, dinsu, cins, cins32 (total 6)

◦ Source and destination registers are loaded in register 12 and 13 respectively. Then

instruction to be translated in executed with 12 and 13 registers. The result in 13

register is stored in the destination gp register.

13

 unprev_I

◦ All those I type instructions which use 1 source and 1 destination register (except lui

which have no source register but the translation would not produce any error if

translated in this category).

◦ Includes: daddi, daddiu, addiu, slti, sltiu, andi, ori, xori, lui, addi, seqi, snei (12 total)

◦ Source register is loaded. Instruction to be translated is executed with register 12 and

the result is saved in the destination register's place.

 unprev_I_Load

◦ All I-type load instructions

◦ Includes: ldl, ldr, lb, lh, lwl, lw, lbu, lhu, lwr, lwu, ll, lld, ld (total 13)

◦ First the address from where the contents would be loaded is translated in terms of

hypervisor. For that the address which needs to be translated is saved on a particular

location and control is given to the handler. The translated address is loaded in the

register and then the load instruction is executed. The loaded contents are saved on

the destination register.

 unprev_I_Store

◦ All I-type store instructions

◦ Includes: sdl, sdr, sb, sh, swl, sw, sh, swr, sw, sc, scd, sd (total 12)

◦ First the address from where the contents would be stored is translated. For that the

address which needs to be translated is saved on a particular location and control is

given to the handler. The translated address is loaded in the register and then the store

instruction is executed.

 LL and SC: Load-Linked and Store Conditional are two instructions which are used to

atomically implement read-modify-write using a special LLBit. Assembly instructions are

added to translation for correct implementation.

4.2.3 CAVIUM SPECIFIC INSTRUCTIONS

These instructions don’t have the standard R, I or J format. Their format is a bit different along

with a little difference in their operation from standard instructions.

14

 saa

◦ This instruction atomically adds a word to a memory location.

◦ This is similar to a store but this instruction directly accesses a memory location

contents and adds least significant 32 bits of gp register and save to same memory

location. All this operation is done without any interrupt or execution of any other

instruction.

◦ Other store instructions store the contents of gp register to a particular memory

location.

◦ The difference in translation is due to the different format of the instruction. Other

store instruction has an offset field but this instruction doesn't have any offset field.

 saad

◦ This instruction is similar to saa but the register's content to be added will be

considered 64 bit rather than 32 bit.

 seqi_snei

◦ This instruction checks whether the value of gp register is equal to the 10 bit constant,

specified in the instruction. If equal, then destination register is set otherwise cleared.

The translation is provided accordingly.

 v3mulu

◦ This cavium specific instruction performs 192x64 bit unsigned multiplication. Its

execution involves special purpose registers P0, P1, P2, MPL0, MPL1 and MPL2. As

hypervisor has its own copy of special purpose registers, so before multiplication we

have to move the contents of these registers to hardware and then execute

multiplication.

 mtm0

◦ This instruction is R type (related with v3mulu instruction), which could be

categorized in unprev_R. But it moves the contents of gp register to special purpose

register (MPL0).

 mtm1

◦ This instruction is R type (related with v3mulu instruction), which could be

15

categorized in unprev_R. But it moves the contents of gp register to special purpose

register (MPL1).

 mtm2

◦ This instruction is R type (related with v3mulu instruction), which could be

categorized in unprev_R. But it moves the contents of gp register to special purpose

register (MPL2).

 mtp0

◦ This instruction is R type (related with v3mulu instruction), which could be

categorized in unprev_R. But it moves the contents of gp register to special purpose

register (P0).

 mtp1

◦ This instruction is R type (related with v3mulu instruction), which could be

categorized in unprev_R. But it moves the contents of gp register to special purpose

register (P1).

 mtp2

◦ This instruction is R type (related with v3mulu instruction), which could be

categorized in unprev_R. But it moves the contents of gp register to special purpose

register (P2).

4.2.4 BRANCH AND JUMP INSTRUCTIONS

These instructions include all variants of branches and jumps. One of the reasons to categorize

them separately is due to the execution of delay slot. In this case, two instructions are translated

collectively.

 bne_beq (branch if not equal , branch if equal)

◦ These are only two branch instructions which use two source registers.

◦ Includes: bne, beq (total 2)

◦ First the sources registers are loaded into the temp registers and then the delay slot is

executed. Branch's source are first loaded due to the fact that delay slot might change

the contents of the registers involved in branch. For correct execution of branch its

16

source registers are loaded in temporary registers. Then the actual branch is executed

but with different offset because the target address needs translation. If the branch is

taken than offset is added in branch's pc and if not 1 is added in the branch's pc, then

this address is stored on a particular place and the control is shifted to the handler.

 Branch

◦ Those branch instructions which use one source register.

◦ Includes: bltz, blez, bgez, bgtz, bltzal, bgezal, bbit0, bbit032, bbit1, bbit132 (total 10)

◦ First the source register is loaded and then the delay slot is executed. Branch's source

are first loaded due to the fact that delay slot might change the contents of the register

involved in branch. Then the branch is executed but with different offset because the

target address needs translation. If the branch is taken than offset is added in branch's

pc and if not 1 is added in the branch's pc, then this address is stored on a particular

place and the control is shifted to the handler.

 bne_beq_likely

◦ Both instructions use two registers but different from the previous bne_beq category

due to the fact that the execution of delay slot is conditional. If the branch is taken

then the delay slot is executed otherwise not.

◦ Includes: beql, bnel (total 2)

◦ First the sources registers are loaded into the temp registers and the actual branch is

executed but with different offset because the target address needs translation. If the

branch is taken than delay slot is executed and offset is added in branch's pc and if not

1 is added in the branch's pc, then this address is stored on a particular place and the

control is shifted to the handler.

 branch_likely

◦ These instructions use one register but different from the previous branch category

due to the fact that the execution of delay slot is conditional. If the branch is taken

then the delay slot is executed otherwise not.

◦ Includes: bltzl, blezl, bgezl, bgtzl, bltzall, bgezall (total 6)

◦ First the source register is loaded into the temp register and the actual branch is

17

executed but with different offset because the target address needs translation. If the

branch is taken than delay slot is executed and offset is added in branch's pc and if not

1 is added in the branch's pc, then this address is stored on a particular place and the

control is shifted to the handler.

 j (jump)

◦ It doesn't use any source register. It is an “I” type Instruction.

◦ Includes: j (total 1)

◦ First the delay slot is executed then for executing j the target address needs

translation. The address is extracted from instruction encoding and placed at a

particular place. Then control is shifted to handler.

 jr (jump register)

◦ This instruction uses one source register. It is an R type Instruction.

◦ Includes: jr (total 1)

◦ First the delay slot is executed then for executing jr the target address needs

translation. The address is already in the register, it is placed at a particular location in

memory. Then control is shifted to handler.

 jal (jump and link)

◦ It doesn't use any source register. It is an “I” type Instruction and differs from

previous “j” due to additional linking operation.

◦ Includes: jal (total 1)

◦ First the delay slot is executed then for executing jal the target address needs

translation. The address is extracted from instruction encoding and placed at a

particular place. Then the linking address (i.e. pc+8) is stored in register 31 and

control is shifted to handler.

 jalr (jump and link register)

◦ This instruction uses one source register. It is an R type Instruction and differs from

previous “jr” due to additional linking operation.

◦ Includes: jalr (total 1)

◦ First the delay slot is executed then for executing jalr the target address needs

18

translation. The address is already in the register, it is placed at a particular location in

memory. Then the linking address (i.e. pc+8) is stored in register 31 and control is

shifted to handler.

4.2.5 CONTROL SHIFTING INSTRUCTIONS

 These instructions break the normal execution path and shift the control to exception

handler. Executing these instructions as it is on hardware will shift the control to host's exception

handler and not of the guest's. During translation, this type of instruction is replaced with the

instructions, which will shift control to the hypervisor along with a control mark. Hypervisor will

perform exception handling accordingly to control mark value.

 Trap Instructions: Trap instructions in a system shift the control to exception handler if

the condition is true. This instruction can't be executed as it is on the hardware because if

true then the control will shift to host's exception handler. So, the condition is checked

before and if true then the control is shifted to handler, otherwise next instruction.

 teq_tne_R

◦ R type trap instructions, which use two source registers.

◦ Includes: teq, tne (total 2)

◦ First the condition is evaluated, if true the control is shifted back to hypervisor

otherwise next instruction is executed.

 tge_tgeu_tlt_tltu_R

◦ R type trap instructions, which use two source registers but differs in translation.

◦ Includes: tge, tgeu, tlt, tltu (total 4)

 teqi_tnei_I

◦ I type instruction, with one source register and 1 immediate value.

◦ Includes: teqi, tnei (total 2)

 tgei_tgeiu_tlti_tltiu_I

◦ I type instruction, with one source register and 1 immediate value but differ in

translation.

19

◦ Includes: tgei, tgeiu, tlti, tltin (total 4)

 Syscall: In place of syscall, the control is transferred back to the hypervisor with a

specific control mark. Hypervisor service the exception accordingly.

 Break: In place of break, the control is transferred back to the hypervisor with a specific

control mark. Hypervisor service the exception accordingly.

4.2.6 SPECIAL INSTRUCTIONS

 rdhwr: This is a special instruction which allows reading of some hardware registers

while in user mode. Due to current translation, only zero is read into the destination

register when this instruction is executed. In case of SMP, it is used to get core number.

 Pref, deret, cache and ssnop: These instructions are replaced with “nop”.

 Wait: IP (interrupt pending) bits of “cause” register are monitored continuously. If

anyone of them is set, indicating the presence of external interrupt, control is shifted back

to hypervisor for interrupt handling.

4.2.7 EXAMPLES OF TRANSLATION

1. mtc0

If we have an instruction: mtc0 v0, c0_status. After executing mtc0(), translated

instructions would be:

1. ld t0, offset(a7)

2. sd t0, offset(a7)

FIGURE 4: Code Snapshot of Mtc0's Translation

20

The first instruction will load the contents from gp source register and second will

store these contents to cp destination register. The offset is created accordingly, as shown

in the code. Figure 4 shows the code snapshot of mtc0’s translation method.

2. sll

If the instruction is: sll a1,a1,0x2. Translated instruction would be:

1. ld t0,offset(a7)

2. sll t0,t0,0x2

3. sd t0, offset(a7)

FIGURE 5: Code Snapshot Of Sll's Translation

The first instruction brings the contents from guests gp register into temporary

register t0, 2
nd

 instruction executes the actual instruction but in terms of temporary

register. The third instruction stores the result of target address back to the gp register of

guest. Figure 5 shows the code snapshot for sll.

4.3 SOFTWARE CACHE

Guest code passes through a translation layer to make it amenable to run under our hypervisor.

Currently this translation is done instruction by instruction and the output is then fused together

to make a block. By definition one block ends when control flow has more than one option to

move forward (e.g. an unconditional jump, if-else structure etc).

21

Translation is a fairly involved process and it is desirable to do the translation once and

re-use it on subsequent execution. There are many repetitive code structures (e.g. loops) where

one block is executed more than once. To seize these performance opportunities, each translated

cache is stored in a software cache. Software cache is configurable and initially set to a space for

keeping 37 blocks. A class named TranslatedBlockCache is implemented which has rich set of

functions to store, retrieve and search a block.

4.3.1 CACHE STORAGE

Hash Map based storage: Due to previous hypervisor architecture, translated blocks are copied

at a pre-specified place where epilogue and prologue are already present along with some extra

software exception handling code. To copy a block at a new location, software cache generates a

new copy and stores it in the cache. Due to optimization needs, we replaced this by new array

based storage. (For details see section 7)

Array Based Storage: Currently the translated blocks are placed in array of containers. In this

method we don’t copy the translated block to any particular place but instead we use the block as

it is, when it is created dynamically during translation. We store a pointer to these block in a hash

map for reuse.

4.3.2 SEARCHING A BLOCK

Software cache is capable of searching any block in time O(logn) using HashMap that is a C++

Standard Template Library (STL). Hash maps are famous for speedy searching.

Because we have changed our storing mechanism, searching has also changed. Now we find the

block in array using a key and return only the pointer to that container. That’s why our searching

time of block has changed to O(1).

4.3.3 BLOCK RETRIEVAL

Software cache retrieves a block and copies it to a specified location for execution. Retrieval can

be based on specific key provided at the time of storage.

Copying the block to new memory location was time consuming operation. So now, we find the

presence of block in array and retrieval is done by returning a pointer to that block in array.

22

4.3.4 REPLACEMENT POLICY

A simple random replacement policy is used to replace a block when the cache is full. A block is

randomly selected to replace it with the newly coming block. Replacement policy has also

changed. Now, whenever a new block is required, index is generated on base of given key and

old block at that index is replaced by new one. Key is converted to index using eq. Index = Key

% max capacity.

4.3.5 BUGS FIXED IN ADDRESS CACHE

 Address Cache Clearing on ASID Change: When kernel runs in user mode and starts

user mode processes then multiple virtual pages can map to a single physical frame or

single virtual page can be mapped to multiple physical frames. For example, for process 1

virtual address 0x120001021 can be mapped to physical address 0x41A36C021. For

process 2, same virtual address (i.e. 0x120001021) can also be mapped to 0x4108D9021.

To avoid conflict in address translation, address translation cache must be flushed when a

process is switched. In case of process switching, kernel writes ID of new process in

ASID field of EntryHi register. When ASID is changed we flush address translation

cache to provide correct address translation.

 Read/Write Protection in Address Translation Cache: Guest kernel can set read/write

protection of a page by setting “dirty bit” of entryLo register. When address translation is

done using TLB, the state of this bit should be taken under consideration so that data may

not be written to a read-only page because this can corrupt the data in RAM. Without this

bit implementation memory corruption causes the guest kernel to crash during loading of

dynamic libraries. Dirty bit was already implemented in TLB but was not being checked

during address translation cache implementation. This implementation was provided in

address translation cache for proper working of dynamic user binaries.

4.4 TIMER UNIT

On actual hardware, Operating system keeps track of time by receiving a timer tick after a

configured time. This timer interrupt gives the timing framework to the OS above it. For

providing timer tick to guest OS, we have tried two timer infrastructures. Description of both

along with their drawbacks and benefits are given.

23

4.4.1 CONTINUOUS TICK TIMER

To provide the timer interrupt to the system, we have to provide a continuous tick to the

guest. Timer unit is initialized in a separate thread as the hypervisor is started. The timer Unit

thread registers a timer with the host OS (i.e. 5nsec interval). After every timer expiration time,

the thread directly receives the SIGALRM from the host OS. On receiving SIGALRM signal, the

cause register (IP7 bit) of every core is set. IP7 bit of cause indicates the presence of timer

interrupt. If interrupt mask in status register is set then the interrupt would be taken after setting

exception code in cause. The interrupt mask is configured by the guest itself. The cause is

checked for timer interrupt every time the control is shifted to handleRequest() of hypervisor. So,

timer interrupt can also be taken between the block but not necessarily at the exact time it

occurred.

The timer bit (i.e. IP7) of cause is cleared, when there is a write operation on compare

register. Note that this interrupt isn’t handled by the CIU. CIU can only change IP2, IP3 and IP4

bit of cause register.

Implementation of Count and Cavium Count Register: Only setting IP7 in cause register, at

timer expiration wasn’t the correct implementation that was needed by the guest OS. Count,

Compare and Cavium count registers are hardware register that are used by OS to schedule

processes. Although the kernel keep the timing information by incrementing jiffies at every timer

interrupt but guest also reads these hardware registers for setting timer with the hardware or

getting timing information. These registers are incremented on each clock cycle by hardware and

whenever value of Count register become equal to value of compare register an interrupt is

generated and notifies guest about timer event which then schedules the processes and again sets

time for next timer event.

In implementation, a timer is set with the host for 2ns. At timer expiration, Count and

Cavium count registers are incremented and if Count becomes equal to compare register an

interrupt is generated by setting the IP7 bit of cause register. Count and Compare are hardware

registers and are not readable as GP or CP registers. To read hardware registers, MIPS provide

some special instruction (i.e. rdhwr). Same instruction is used to read count register.

Implementation of this instruction is given to facilitate guest reading these registers and use them

24

accordingly. Figure 6 shows the flow chart of continuous tick timer implementation in

hypervisor.

FIGURE 6: Continuous Tick Timer Implementation

Drawbacks: Although this design strategy works correctly but it has two major drawbacks.

First, it is computationally intense. As a periodic timer is being registered for such a short time

period (i.e. 5 ns sec) and on timer expiry we have to increment the count by one. Also check the

conditions to whether generate a guest interrupt or not. Second, even incrementing count after

such short duration, the increment of count was very slow. At the command prompt, we see

delayed response of entering the command and its execution due to or slower timer mechanism.

4.4.2 ON-DEMAND TICK TIMER

This strategy is completely different from the Continuous tick timer. In this strategy rather than

creating a separate thread, timer unit is embedded in each core thread. Now the timer works

serially with the core. Figure 7 shows the design difference in Continuous tick timer and On-

demand timer.

25

FIGURE 7: Design Diagram of Two Timer Strategies

In Continuous tick timer, a complete timer device was created. But On-Demand timer works on

different strategy. Previously, the incrementing count register mechanism was way too slow. For

fixing this drawback, now the host time is directly given to guest by reading host time and setting

the guest’s registers. When the guest needs to get time or register a timer, it read/write the count,

compare and CVMcount registers.

Whenever the guest needs to get time from hardware it reads the count or CVMcount register.

We intercept this read and read the host’s time in nanosecond resolution and update guest’s

count and CVMcount registers. When guest wants to register timer with the hardware, it writes

on the compare register. The write operation is also intercepted by hypervisor and it registers a

timer with the host. The duration of registered timer is kernel’s desired value multiplied by a

multiplying factor. This multiplying factor was needed to reduce the increased timer interrupts.

Otherwise kernel get stuck in servicing the timer interrupts and actual code is not given time to

be executed. After the implementation of this strategy, the prompt is showing less latency when

the command is entered.

26

Advantages: This strategy is not computationally intensive as we only update the count register

when the guest reads it (i.e. on-demand from guest). Now we only register the timer when guest

want a timer registered with the hardware.

4.5 INTERRUPT AND EXCEPTION HANDLING

Exceptions cause change in normal execution flow and control is transferred to some exception

handling routines, if implemented, or crash the application otherwise. During block execution by

hypervisor, two possible exceptions could occur:

 An instruction like trap or syscall, itself shifts control to an exception routine. Exceptions

like these are called programmed exceptions.

 An exception like overflow, address error and tlb related exceptions are generated during

the execution of instruction. This type of exceptions is unpredictable because they are not

programmed.

The challenge is to emulate exception handling mechanism in user mode. On an

exception, control may go to host kernel and may not return back if not emulated properly. In

case of programmed exceptions, the possible emulation is to replace exception-causing

instruction with innocuous instructions that explicitly transfer control back to a hypervisor

provided handler. The handler could identify actual (exception-causing) instruction from control

mask and handle it accordingly. In second case, a signal is raised that could be caught to handle

the exception. Once the control is available in hypervisor, exception handling routine could be

called to do the rest.

In our implementations, Perform_Exception() is called to set various exception related

registers. Exception code is set in cause register. EI, EXL and/or ERL bits of status register are

set to indicate the presence of an exception. EPC register is set with the program counter (pc) of

exception-causing instruction. According to the exception type, exception entry point is assigned

to current pc so that new block could be fetched from there.

When the exception routine is completely executed, eret instruction is called. eret is

privileged instruction and cannot be executed on hardware as it is (from user mode). To emulate

it, we check the status register and then accordingly set pc back to the address from where

27

exception has actually occurred. Figure 8 shows the overall flow and Figure 9 shows a snippet of

hypervisor code, dealing with exception handling.

Entry point for all exceptions is generic except for tlb. For example, invalid tlb entry

encountered while executing load/store instruction lead to tlb refill exception. The entry point for

tlb refill exception is different from that of others. In case of nested exception (e.g. exception

raised in an exception routine), general exception entry point is used and corresponding

instruction pc is placed in EPC register. Interrupts are caused by external devices in order to

rather communicate or in response to a request. Timer unit creates continuous interrupts in a

running system for providing timing information. UART also communicate with the cores

through generating interrupt.

FIGURE 8: Exception handling in user mode

28

FIGURE 9: Code snippet showing the emulation of exception handling

4.5.1 SIGFPE: FLOATING POINT EXCEPTION HANDLING

This exception is thrown if the result of an operation is invalid or cause divide-by-zero,

underflow or overflow. On production of such results during guest code execution, underlying

hardware generates SIGFPE signal. Our hypervisor provide a handler to catch this signal. When

control comes to this handler, we redirect it to the exception routine of guest operating system.

After executing exception routine, control comes back to the handler form where it is jumped

back to the immediate next instruction of exception-causing instruction.

4.5.2 SYSCALL: SYSTEM CALL HANDLING

The system call is the fundamental interface between user mode programs and Linux kernel.

syscall() is a small library function that invokes the system call whose assembly language

interface has specified number and type of arguments. Whenever the syscall instruction comes in

guest code, control is transferred to hypervisor code and then redirected to corresponding

exception handling routine of guest operating system. The remaining mechanism remains same

as above.

4.5.3 TLB AND ADDRESS ERROR EXCEPTION HANDLING

When the load/store instruction has to be performed in hypervisor first the address on which the

load or store has to be performed, is translated into hypervisor address. During this translation,

29

privileges are checked, whether this address is allowed to be accessed or not. If not then address

error exception is generated and the next block fetched would be from the exception entry point.

But if we have an address which is not violating any privileges, then the contents are looked up

in TLB. If the invalid bit or dirty bit is set or no entry is present in the TLB then corresponding

exception Mod, TLBL or TLBS is generated.

4.5.4 MODIFICATION IN EXCEPTION HANDLING

Context register was not set before in case of exception because this register is normally used in

32-bit mode but guest was using this register in user mode. Now context register is also been set

so guest can read it and perform exception handling correctly.

4.5.5 EXTERNAL INTERRUPTS

Interrupts are caused by the external devices like timer and UART. When an interrupt occurs it

set the “pendingInterrupt” variable, which indicates that external interrupt is present. Before

fetching the next block, it is checked whether there is any pending interrupts or not. If they are

present then some particular bits of status are checked to determine this interrupt should be

passed or not. The exception code set for the interrupt is zero and routed to general exception

entry point. It is the responsibility of the kernel handler to figure out what kind of interrupt has

occurred and dispatch it to proper handler.

4.5.1 CTRL+C SIGNAL FOR GUEST

CTRL + C signal is used to terminate a process in OS. When we press CTRL+C the host OS

terminates hypervisor instead of terminating process in guest. For implementing process

termination in guest, hypervisor captures this termination signal and sends CTRL+C ASCII

character to guest through UART. When guest kernel receives CTRL+C through UART, it

terminates a guest process. CTRL+A should be pressed for terminating hypervisor.

4.6 SMP SUPPORT

As mentioned in our high level design, every core will be running in a separate thread that will

make our hypervisor a multithreaded process. For providing SMP support, some code level

structural changes were needed (e.g. removing all global variables and creating separate objects

for each core). Figure 10 shows the multithreaded view of hypervisor, with cores and CIU as

separate threads. First hypervisor initialize the necessary data structures and objects. Then it

30

loads uboot binary and dork child threads according to the number of cores initialized and other

parallel units. Initially only Core 0 is running and other cores are is sleep mode. After some

booting process core 0 enables all other cores. This enabling and controlling mechanism is

carried out through CIU (Central Interrupt Unit). The other mechanisms like fetch, translate and

execution of blocks remains the same for all cores (section 4.2). Figure 11 shows the modified

flow chart of hypervisor.

4.6.1 INTER-CORE COMMUNICATION THROUGH CIU

For Cavium mips64, inter-core communication is performed through CIU. Specific CIU registers

(like CIU_Fuse, CIU_NMI , CIU_PP_RST and mailbox registers) are used during interrupt

dispatching and identification. CIU_Fuse register contains the information about the number of

processors in the hardware. Operating system can have have this information by reading

CIU_Fuse register. After some initial booting process core 0 signals other cores to initialize

themselves. To do so, primary core (i.e. core 0) sets a bit corresponding to the particular core in

CIU_PP_RST register and that core initializes itself on low power mode.

FIGURE 10: Multithreaded view of hypervisor and external devices

31

FIGURE 11: Execution flow of hypervisor with SMP

Our CIU unit and other cores are all in separate threads. The threads running cores (else than

primary core) will initially be in sleep mode. Core 0 sends NMI pulse to each core by setting

corresponding bit in CIU_NMI register, secondary cores goes out of low power modes and start

initializing core.

32

4.7 IO DEVICE MANAGEMENT

In hypervisor, each core and IO device is emulated in separate thread. When a core has to

communicate with any device it either reads or writes IO device register. Corresponding IO

device is notified and device updates its flags according to the operation. Implementing each

device in a separate thread enables maximum parallelization.

 To notify IO device thread, a separate class is defined named DeviceMessageBox. It

contains address which is being accessed, data which is being written to the register at specified

address and whether it is read/write operation. Some posix variables are also part of

DeviceMessageBox which are required for thread communication.

At time being, only 2 IO devices are implemented

1. UART (Universal Asynchronous Receiver Transmitter)

2. CIU (Central Interrupt Unit)

4.7.1 UART

The UART is typically used for serial communication with a peripheral, modem (data carrier

equipment, DCE), or data set. Either a core or a remote host can use the UART. The cores

transfer bytes to and receive characters from the UART core via 64-bit CSR accesses. The

UART core transfers and receives the characters serially. Either polling (during booting/ in

kernel mode) or interrupts (after booting/ in user space) can be used to transfer the bytes.

Processor communicates with console and keyboard using UART device. So, its implementation

was inevitable for a complete booting system.

There are basically 12 register in UART.

 RBR (Receiver Buffer Register): Receiver buffer register contains data received

from input device. Whenever data is received, “Data Available” flag is set in LSR and

an interrupt is generated by the UART so that processor can get received data.

 THR (Transmitter Holding Register): Transmitter holding register contains data

which is being transmitted to the output device. Whenever this register is written,

“THR empty” flag is cleared in LSR and UART starts transmitting data. After data is

33

being transferred successfully, “THR empty” flag is set in LSR and interrupt is

generated to tell the processor that UART is idle now and ready to send new data.

 IER (Interrupt Enable Register): Interrupts are not generated unless UART is told

to do so. Processor enables UART interrupts by setting corresponding flags in

Interrupt enable register.

 IIR (Interrupt Identification Register): Whenever an interrupt is occurred,

processor jumps to its interrupt routine. The interrupt routine must know which kind

of event caused that interrupt so that it can service it properly. IIR register tells the

processor about the cause of interrupt.

 FCR (FIFO Control Register): FIFO is used in UART for both receiver buffer and

transmitter buffer. Whenever data is received, it is placed in RBR. But if RBR is not

empty then data is moved to receiver FIFO. When UART is transmitting data and

new data is provided by processor then it is placed in transmitter FIFO. FCR is used

to control the behavior of the FIFOs.

 LCR (Line Control Register): LCR is set at initialization time and controls the

parameters of line. Parity and number of data bits can be changed using LCR. DLD

and DLH can also be accessed by setting “DLAB” flag in this register.

 MCR (Modem Control Register): MCR register is used to perform handshaking

actions with attached devices. Setting and resetting of control registers is done using

this register.

 LSR (Line Status Register): LSR shows the current state of communication. Errors

are reflected in this register. The state of receiver and transmitter buffers is also

available.

 MSR (Modem Status Register): MSR contains information about the four incoming

modem control lines on the device. The information is split in two nibbles. The four

most significant bits contain information about the current state of the inputs where

the least significant bits are used to indicate state changes. The four LSB's are reset,

each time the register is read.

 SCR (Scratch Register): There is no use of this register in UART communication.

Sometimes it may be used by processor to store a single byte.

34

 DLL (Divisor Latch LSB) and DLM (Divisor Latch MSB): For generating its

timing information, UART uses an oscillator. Oscillator frequency is divided by 16

and obtained value is further divided by value placed in Divisor Latch registers. In

this way, baud-rate of UART is adjusted. For error free communication, both receiver

and transmitter UART have same timing base i.e. have same baud-rate.

Implementation of UART: There are basically two functions of UART. Transmit data provided

by the processor and receive data from input devices. For both these functionalities we have

separate threads called Receiver Thread and Transmitter thread.

 Receiver Thread: The purpose of receiver thread is to handover data to processor which

we input using keyboard. This thread continuously checks for availability of input from

keyboard. Whenever input is available, it sets “Data Available” flag in LSR and

generates an interrupt. When processor reads received data, “Data Available” flag is

cleared from LSR.

 Transmitter Thread: The purpose of transmitter thread is to transmit data which is

being provided by the processor. Transmitter thread helps the processor in printing all the

messages on the console. After transmitting data, it sets “THR is empty” flag in status

register and generates an interrupt to tell processor that UART is free now for further

transmission.

 Interrupt Generation: When UART performs an operation, it checks it IER. If interrupt

for corresponding action is enabled, it sets appropriate flags in IIR and notifies the CIU

thread about interrupt generation. CIU reads enable registers of all the cores to check if

any core wants to receive UART interrupt. If it finds the core with enabled UART

interrupt, it sets summary register for that core and generates interrupt. Core jump to its

interrupt routine and service the interrupt.

Modification in UART implementation:

In previous version, some characters of guests console output were sometimes missed due to two

problems. First, “printf()” was used to print characters which is in fact formatted output and

takes much time so we implemented this mechanism with “write” system call which is

35

unformatted and is faster than “printf()”. Second, wait mechanism was introduced in core

implementation. Core waits for the UART to print previous characters before sending new ones.

4.7.2 CENTRAL INTERRUPT UNIT (CIU)

CIU is responsible for dispatching interrupt requests (coming) from external devices to a

particular core. CIU is discussed here in context of our test bed i.e. Cavium Networks OCTEON

Plus CN57XX evaluation board [1]. CIU distributes a total of 37 interrupts i.e. 3 per core plus 1

for PCIe. Three interrupts for each core set/unset bit 10, 11, 12 of Cause register of the core.

Using these cause register bits, interrupt handler of a core could prioritize different interrupts.

Interrupt requests from external devices are accumulated in a 72-bit summary vectors with

naming convention CIU_INT<core#>_SUM<0|1|4>. Summarized interrupts reach to their

ultimate destination by using corresponding 72 bits interrupt enable vector with naming

convention CIU_INT<core#>_EN<0|1> and CIU_INT<core#>_EN4_<0|1>.

Interaction of CIU, external devices and cores is shown in figure 12 (a). CIU reads memory

mapped registers of the external devices to know about pending interrupt requests and sets

corresponding bits of cause register of target core. Figure 12 (b) shows a simplest description of

the internal working of CIU, where interrupt identification/handling is done in software.

We have implemented a simplest abstraction of CIU. It has been integrated in a copy of main

hypervisor code and works as a separate thread. CIU is only reading CP0's cause register. As

UART is not fully developed yet, UART's memory mapped registers are artificial (for the time

being). UART writing and other devices would be implemented in future. CIU itself has set of

summary and enable registers for every core. An interrupt request goes to only those cores that

had enabled the interrupt by configuring its enable register. In current code, CIU reads UART's

Interrupt Identification Register (IIR), extracts identity bits and set/clear the corresponding

summary registers bits. These summary registers for every core are than “AND” with their

enable registers to set or clear cause register's bit 10, 11 and 12.

36

FIGURE 12(A): (CIU) Interrupt distribution from external devices to core

FIGURE 12(B): Internal working of CIU, inwards arrow comes from external devices and outward arrow

goes to all cores

37

FIGURE 13: Memory mapping between core and external devices

In integrated code, shared memory regions are defined for CIU to work with other components

of virtual board (see figure 1). Figure 13 shows these shared memory regions for core0, CIU and

a single device i.e. UART. Region overlapping and dotted lines represent the accessibility and

access mode of registers, respectively. For example, CP0 Cause register belongs to core0, CIU

can access it but UART cannot. As Cause register belongs to core0, it can be read-written by

core0 but it is read-only for CIU. IIR register of UART is read-only for CIU and Core0, hence it

is at the intersection of three regions and have dotted boundary. CIU's summary registers are

read-only for core0, hence dotted and at the intersection of two regions. As CIU's enable register

is readable and writeable for core0 and CIU, it has solid boundary and lies in overlapped region.

5 VIRTUAL DISK

A virtual disk (also known as a virtual drive or a RAM drive) is a file that represents as a

physical disk drive to a guest operating system. The main idea of providing disk to guest was to

create persistence of data across boot. The guest should be able to create and store files on the

drive. A simple way of achieving the goal is to create a RAM disk.

A RAM disk is a virtual hard drive stored in RAM. A RAM disk can show the necessary file

system to the guest. Hypervisor creates a ram disk file by using the “mkfs” command, mount it

38

and map it to hypervisor’s RAM region. So, when guest will write to its ram disk, hypervisor

will write it to the ram disk file on the host system. But the only problem was that, by definition

ram disk don’t persist data on reboot. For persistence, the ram disk file we create for the guest is

saved on shutdown by hypervisor and the contents will be loaded on the next reboot.

FIGURE 14: RAM disk Implementation in Hypervisor

6 TESTING INFRASTRUCTURE

Testing infrastructure involves MIPS64 evaluation board with multicore Octeon processor,

hardware debugger (JTAG), development system and testing routines. We need rigorous testing

to make sure that guest kernels run in complete isolation from each other and from host kernel.

Similarly, on each instruction execution in virtualized environment, changes to system state

should imitate the changes made by executing the same in real environment.

39

6.1 TEST CASES

Hypervisor manipulates (i.e. emulation/code patching) guest code to use privileged hardware

resources controlled by host kernel. Hence, various test cases are needed to make sure the

consistency and integrity of guest code. Up to current deliverable, our focus is on the test cases

discussed in following subsections.

6.1.1 MATCHING SYSTEM STATES

In our case, system state consists of the values of general purpose registers and some of

coprocessor 0 (CP0) registers at a particular instance. In order to verify the correct working of

hypervisor, we run (same) executable binary directly on Cavium MIPS64 board and through

hypervisor. We get real system state on each privileged instruction by using JTAG and compare

both outputs (hypervisor and JTAG) for verification. JTAG provides the facility of setting

hardware breakpoints at each privileged instruction to stop and take log of system state. Without

setting breakpoints, it logs the state at every instruction execution.

6.1.2 EXECUTION PATH

Due to emulation and code patching, guest code execution path may differ from that of the same

binary running directly on board. Taking Log at breakpoints may fail due to unavailability of a

priori information about execution path of guest code. For example, if guest code sway from the

path containing some breakpoint, we would not be able to take system state at that breakpoint

and state matching test result will be misleading.

Logging system state after each instruction execution could help in avoiding the situation of

taking wrong execution path. This allows us to debug the potential causes of error (if any) by

looking at system state before and after the execution of malfunctioning instruction. However,

there is inherent overhead of logging state at each instruction execution. There were about

339351 instructions executed by u-boot. JTAG created a file of about 6MB in approximately 7

hours. Generated file contains data (i.e. general purpose registers + CP0 registers content) of

about 2600 states. To reduce state logging time, we decided to use a small binary (i.e. code for

irrelevant external devices is commented out) and take log on Quick Emulator (QEMU). To take

log on QEMU, we used the expertise of another HPCNL team working on a different project

titled “System Mode Emulation in QEMU”.

40

6.1.3 COMPARING CONSOLE OUTPUT

On reaching the stage where console is get attached with our hypervisor, the binaries, executing

within hypervisor, starts emitting messages on console. It serves as another way of validation,

whereby output of our hypervisor is compared with that of real MIPS system.

6.1.4 PROGRESS

The progress is tracked by identifying labeled blocks, in binary code. The blocks are identified

by following the control flow of binary. When the instructions in one block are executed, its

label is noted and control is conditionally/unconditionally transferred to the next block in control

flow. This way we measure the progress that how many blocks have been executed and how

many left.

Emulation and code patching may lead to infinite loops in the code. For example, if

emulation/patching changes system state in such a way that control is transferred to one of prior

blocks of the current block, the hypervisor will enter into an infinite loop. We need to avoid the

situations like this in order to make progress.

6.2 TESTING WITH SMP SUPPORT

Testing and Debugging with single core was much easier. But for multi-core the testing and

debugging has become a difficult task. As every core executes its piece of code, the

corresponding log file is written separately for each of them. Each log file for every processor

contains the original instruction block (guest instructions), its corresponding translated block

(host instructions) as well as a state of all GP registers and CP0 registers. This information is

enough to check whether the corresponding block executed correctly or not. The original and

translated blocks in the log verify the correctness of translation. Remaining information is used

to determine whether corresponding instruction is correctly emulated or not.

6.3 BOOTING WITH CUSTOMIZED MINIMAL INITRAMFS FILE

The file system upon which the root directory can be mounted and which contains the files

necessary to bring the system to a state where other file systems can be mounted and user space

daemons and applications are started, is called rootfs. The kernel boot process concludes with the

init code (see init/main.c) whose primary purpose is to create and populate an initial root file

41

system with a set of directories and files. It then tries to launch the first user mode process to run

an executable file found on this initial file system. This first process ("init") is always given

process ID 1. Once the init process is started it typically begins to launch other user space

programs. On a desktop or server system this is known as the sysvinit process and includes the

set of scripts found (typically) under /etc/rc.d.

 In default rootfs file, most of the scripts are used to initialize and communicate with

external devices. As we have not yet implemented these devices, the default roofts cannot be

used. So, we have created our minimal initramfs, which only have console as mounted device

and contains no initializing scripts. This file performs the basic I/O operations like creating,

reading, writing a file and process creation. The file doesn’t involve any external communication

with the devices.

We have also executed the same binary containing our customized minimal initramfs on

CN57XX Cavium MIPS64 board. It shows the same output on the console as our hypervisor.

6.4 VIRTUAL ETHERNET CARD DETECTION

For Ethernet card detection, we configured the kernel with networking and executed the guest.

The hypervisor successfully detects the virtual Ethernet card, as shown in the Figure 15. It

detects the standard e1000 network interface.

6.5 ASSIGNING A VALID IP TO GUEST

 A separate guest network module is created for enabling networking in the kernel. This module

will initialize a network interface for the guest. It is initialized during the kernel booting and the

networked is configured (i.e. assigned an IP) in the kernel’s initializing script. So that when the

kernel is booted and command prompt appears, we can verify the network interface with

“ifconfig” command. This command lists all the available network interfaces. The Figure 16

shows the result of “ifconfig” command after the kernel booting. The guest’s console output

shows two network interfaces, one is loopback “lo” and other is “net1” which is guest’s network

interface with a valid inet IP.

42

FIGURE 15: Booting Log of Hypervisor, Showing the Detection of Ethernet

Figure 16: Guest's Network Interfaces

43

7 TEST RESULTS

The sample output of system state test, execution path test, TLB, page table, CIU and hypervisor

console is elaborated in this section.

7.1 OUTPUT OF SYSTEM STATE MATCHING TEST

We trap at every instruction to create a state-file. This state-file is matched with QEMU log

state-file to see if any register contains different contents. Mismatches are written in other file as

shown in Figure 17.

FIGURE 17: Output of system state matching test

44

7.2 OUTPUT OF EXECUTION PATH TEST

We face difficulties in debugging if QEMU log is missing instruction log at different points. To

ensure that the hypervisor is on the right track we match the Program Counter (PC) values taken

by hypervisor and all the PC values taken in QEMU log, as shown in figure 18.

FIGURE 18: Output of execution path test

7.3 OUTPUT OF TLB TESTING

To test TLB mechanism, random TLB entries are generated and searched in TLB. A TLB miss is

obvious because the entry is newly generated. Hence, probe bit is set and TLB write-random

function is called to place this entry at the index present in CP0 random register. Random

register is incremented and entry is searched again. On TLB hit, we call TLB read to fetch the

entry from the index set by TLB probe, as shown in Figure 19.

45

FIGURE 19: Searching for random TLB

Then TLB write-index function is called that writes TLB entry at the index present in index

register. As index register was set by TLB probe, it writes the entry at same index that was

previously written by TLB write-random. TLB probe and TLB read are called again and then a

new random entry is generated. This process is repeated 640 times.

46

FIGURE 20: TLB entries in TLB table

As TLB could have 64 entries at max, additional entries require a replacement policy. After

setting all entries, TLB entries are printed, as shown in figure 20. To test page table, a random

GVA is generated and searched in the page table. Obviously, there is no matching entry in page

table because this is the newly generated address. Hence, it maps a new memory region and

returns its address. This process is repeated several times. Each time it maps a new region, places

translation in page table and returns translated address. The output is shown in figure 21(a). After

creating appropriate entries in page table, same process is repeated again for all the generated

addresses and we get valid translation now, as shown in figure 21(b). Then whole page table is

printed in figure 21(c) and reverse page table, shown in figure 21(d), is also managed to use for

future testing of hypervisor.

47

FIGURE 21: Output of TLB and page table testing. Searching entries in (a) empty page table, and (b) page

table having valid entries. (c) whole page table with valid translation. (d) : reverse mapping of page table.

(a) (b)

(c) (d)

48

7.4 OUTPUT OF CIU TESTING

Artificial UART registers are read to test the code. UART registers were set to see the effect on

the 10, 11 and 12 bits of cause register. If Interrupt ID (IID) field of IIR is 1 than there is no

pending interrupt request. Otherwise, it represents the ID of pending interrupt. In actual system

enable register is set by the system but here we are setting it explicitly. The cause register is

initialized with garbage value every time because CIU will only change the 9, 10 and 11 bits of

cause register.

In source code of figure 22, mio_uart0 IIR register is set to 6 to show that “Receiver line status”

interrupt is present. Similarly, mio_uart1 IIR register is set to 1 to represent no interrupt. Only

core0's enable register is set. And all the other cores have disabled the hardware interrupts.

Output for core 0 in figure 22 shows that initially cause register is initialized by a garbage value.

FIGURE 22: Output of CIU. No pending interrupt on core 1

49

The summary register's 34th bit (uart 0) is set, making it 400000000. Corresponding 34th bit in

enable register is also set, which means that the 9th bit of cause will be set. The enable register

for 10th and 11th bit are zero, so cause bits would be cleared. Initially the xxxxxxxx6ac8 is

changed to xxxxxxxx66c8 by setting 9th bit and clearing 10th and 11th bit. For core 1, as none of

the enable registers are configured so three bits would be cleared i.e. xxxxxxxx6770 changes to

xxxxxxxx6370.

In figure 23, uart0 has no interrupt and uart1 is receiving an interrupt with id 6. For core0, bit 9

and 10 of enable register is set and cause register is get initialized with garbage value. As

summary register shows the presence of an interrupt and bit 35 is set, it means that uart1

interrupt is present. Its enable register should also be set for uart1, in order to pass on the pending

interrupt. Hence, bit 9 and 11 will be cleared and bit 10 will be set for core 0 i.e. xxxxxxxxdac8

changes to xxxxxxxxcac8 in the output. For core1, nothing is enabled so all three bits would be

cleared i.e. xxxxxxxxd770 changes to xxxxxxxxc370.

FIGURE 23: Output of CIU. No pending interrupt on core 0

50

7.5 OUTPUT OF HYPERVISOR CONSOLE

During execution, if UART’s memory mapped registers are written by the core, UART display it

in on the console. To validate virtual execution of binaries, hypervisor console output (e.g.

shown in Figure 24) was compared with that of real host system console. (For complete log

please look at the VM booting log file attached)

FIGURE 24: Booting log of hypervisor

51

8 PERFORMANCE OPTIMIZATION

Virtualization solutions are notorious for performance bottlenecks. To optimize performance of

hypervisor and guest code, it is necessary to find these bottlenecks to tune code for performance

improvement.

8.1 PERFORMANCE TUNING

First step in performance tuning is to identify the most time consuming functions of hypervisor

code that are called during execution of guest code. We collected running time of all called

functions to identify the hot spots in code. Each function is optionally instrumented to introduce

time keeping code at the start and end of each function code. It gives us total time consumed by

the function. Total time of a function also includes the time consumed by the functions called by

this function. Net (or self) time is then calculated by subtracting the total time consumed by all

callees, from the total time of caller function. Another important performance metric is the call

count of a function i.e. how many times a function is called. Sample output of sorted flat profile

of hypervisor is shown in Table 1. The data shows that address translation is taking much more

time as compared to other functions and it should be optimized.

TABLE 1: SORTED FLAT PROFILE BEFORE OPTIMIZATION (SHOWING MOST TIME

CONSUMING FUNCTIONS ONLY).

Count Function Name Net Time

(sec)

Total Time

(sec)

49107203 MMUTranslator::GVAtoGPA 2326.3283 4572.8963

29513958 BlockExecController::fetchnPlaceBlock 2283.8921 3057.8145

50000001 BlockExecController::handleRequest 1836.5265 5972.9834

49107203 GPAtoHVATranslator::GPA_to_HVA 1221.9575 1511.028

49107203 MMUTranslator::verify_priviliges 1063.2158 1378.4329

49107203 GVAtoHVATranslator::GVAtoHVA 852.3648 5487.4371

47218428 MMUTranslator::look_staic_translation_32bit 789.6234 896.4091

52

Software Cache Implementation: To optimize address translation, we implemented a

translation cache. Once we translate an address, we place it’s translation in translation cache and

when next time translation for that address is required we don’t need to repeat all steps to get

translation. We can directly convert Guest Virtual Address (GVA) to Host Virtual Address

(HVA) using this cache. Whenever we need translation for address, we call

GVAtoHVATranslator::GVAtoHVA. First it checks whether translation is present in cache. If

present, it will directly get translation from cache otherwise GVA is converted to Guest Physical

Address (GPA) and then GPA is converted to HVA.

After this optimization, we generated sorted flat profile again. It shows significant performance

improvement in MMUTranslator::GVAtoGPA, as shown in Table 2. Due to this optimization,

we do not need GVA-to-GPA and GPA-to-HVA translation frequently and lead to reduction in

call count. Reduction in call count of MMUTranslator::GVAtoGPA significantly reduces its total

time.

In-Place Block Execution: Although using cache has shown its advantage but it was not quite

enough. Changing some code level implementations and applying In-place block execution had

proved more beneficial. Given below is current improved timing profile of the hypervisor. As we

have eliminated the block copying step, fetchnplaceBlock has reduced the time dramatically.

TABLE 2: SORTED FLAT PROFILE AFTER SOFTWARE CACHE IMPLEMENATTION

Count Function Name Net Time

(sec)

Total Time

(sec)

29513958 BlockExecController::fetchnPlaceBlock 2283.8921 2780.8145

50000001 BlockExecController::handleRequest 1804.6144 4351.9108

49107203 GVAtoHVATranslator::GVAtoHVA 742.5720 1468.1078

49106050 GVAtoHVATranslator::Check_cache 449.7157 449.7157

35715 MMUTranslator::GVAtoGPA 1.306426 2.650513

35716 GPAtoHVATranslator::translate_GPA_to_HVA 0.270219 0.270219

26628 MMUTranslator::look_staic_translation_32bit 0.178782 0.310867

53

TABLE 3: SORTED FLAT PROFILE AFTER IN-PLACE BLOCK EXECUTION IMPLEMENATTION

Count Function Name Net Time

(sec)

215982611 Processor_IPE::handleRequest() 14.03

124936958 Processor_IPE::fetchNextBlock() 12.65

124936958 TranslatedBlockCache_IPE::doesExists() 9.77

39934396 TransInsAllocator<unsigned int>::construct() 7.64

86515038 Processor_IPE::handleLDST() 6.82

215982610 Processor_IPE::C2Assembly2C() 6.77

87261169 Processor_IPE::incrementTrapCount() 6.22

8.2 PERFORMANCE IMPROVEMENTS

For improving performance we have made some changes on code implementation level and also

in the hardware used. The improvements are mentioned in detail below.

8.2.1 CODE STRUCTURAL ENHANCEMENT

Previously, we were using some C++ standard STL containers for performing many operations.

But they were time consuming. A considerable numbers of calls to these STL containers were

deteriorating our performance. Using non-standard implementation has improved the overall

timing of system.

IN-Place Execution: Initially, we were using C++ standard vector to store translated block (host

executable instructions). Before execution we have to relocate this translated block onto a

predefined memory place. This memory to memory copying takes some time, which increases

the execution time almost double. To avoid this memory-to-memory unnecessary coping, we

need to execute the translated block in vector. But we cannot do so because of unavailability of

execution rights on vector. Alternatively, we implemented an allocator for vector so that

execution rights of vector can be changed and block can be executed directly without copying.

Using Non-Standard C++ Hashmap: We were using C++ standard hashmap to store the TCBs

(Translated Cache Block) and GVAtoHVA (Guest-Virtual-Address to Host-Virtual-Address)

translated Addresses. A TCB is a set of host executable instructions got after translation of guest

executable instructions. It is stored into a key-value pair hashmap. The “key” to search into

54

hashmap is a 64 bit virtual address, which is a starting address of TCB in terms of guest virtual

address and “value” against that key is a TCB. This hashmap is used for reusability of TCBs.

whenever a translated cached block is required again for execution, it can be directly used after

obtaining from hashmap container if the corresponding “key” of TCB is matched. Thus, there is

no need to re-fetch and retranslate the required guest’s instruction block again. Theoretically, by

doing so there should be an improvement in performance but in practice it significantly reduced

the timing efficiency. Most of the time is wasted during searching the required TCB in the

hashmap container. To resolve this problem, we used an array and implemented an efficient

hashing function to find the index of required TCB quickly into the hashmap container. This

made the cached block searching timing efficient. Similar mechanism is applied for GVAtoHVA

address translation.

Custom Vector for Translated Block: Previously, C++ standard vector was used. Standard

vector uses STL containers and insertion and retrieval for entries in it are very costly due to the

fact that standard classes do lot of book-keeping for operations and these book-keepings are of

no use for us. To avoid this, we implemented a container to hold translated instructions. It is in

fact a memory mapped block of 4 Kilobytes with some insertion and retrieval operations. If

translated instructions become greater than 4 kilobytes we double the size of block and so on.

This reduced the implementation time by 3 minutes.

Macros: For encoding different type of translated instructions, each type of instruction class

creates an object. This object calls its own encode function to make an instruction. After

encoding translated instruction the object is destroyed, as it is a local object. This object creation

and destruction is performed for each instructions translation and consumes time. These

encoding functions were replaced with macros, performing the same functionality. So object

creation was avoided by macros. This has reduced the execution time by roughly 15 min.

8.2.2 HARDWARE PLATFORM

A significant improvement in time was observed when evaluation board was changed.

The older evaluation board has the following specifications:

55

TABLE 4: SPECIFICATION OF OLD EVALUATION BOARD

Number of Processors 16

RAM 2GB

TLB_entries 32

CPU Model Cavium Octeon II V0.3

The new evaluation board has the following specifications:

TABLE 5: SPECIFICATION OF NEW EVALUATION BOARD

Number of Processors 12

RAM 8GB

TLB_entries 128

CPU Model Cavium Octeon II V0.10

8.3 POTENTIAL FUTURE OPTIMIZATION

Various other optimizations are also possible to avoid performance degradation of code executed

in virtual environment. We have plans to implement few promising techniques along the course

and their effect will be available in the future deliverables. Here we briefly describe the potential

optimization techniques.

8.3.1 BLOCK LINKING

In-place execution also necessitates the linkage of blocks so that guest code could follow the

intended execution path of code. It is expected to improve the performance due to less

intervention of hypervisor.

8.3.2 COMPILER LIKE TRANSLATION OPTIMIZATION

In current implementation of hypervisor, execution context is confined to single instruction of

the block. Data produced/consumed by the instruction is updated immediately. On the other

hand, compilers often have a broader vision and do not update data immediately if it is going to

be consumed by some following instruction(s). We may opt for this optimization in future

deliverables.

56

8.3.3 DATA TLB CHECKING IN EPILOGUE

Moving data TLB checking to the epilogue of a block is likely to reduce the C-assembly code

jumps. Software exception handling is expensive and this optimization could lead to infrequent

software exceptions.

8.3.4 STATIC ANALYSIS AND MODIFICATION

Preprocessing of guest binaries by static analysis is likely to reduce the runtime overhead. Static

code modifications could avoid block translation at runtime. However, there are some corner

cases that could only be handled until we have the runtime information.

8.3.5 PERFORMANCE COUNTER MONITORING

Instead of using instrumentation of functions, we could fine tune performance using performance

monitoring unit (PMU) of modern hardware. The real challenge of this optimization is to select

the most appropriate performance counters. A deep system level understanding is required to

collect and analyze the data collected using performance counters.

8.4 CORRECTNESS RELATED BUG FIXES

 Implementation of atomic instructions: Some of the instructions were not translated

correctly before. Instruction like LL and SC implements atomic load and store operations.

They require a lock for its correct implementation. MADD (multiple and add) instruction

requires the loading of host’s special lo and hi registers before its execution.

 Flushing data cache: Hypervisor was showing unexpected behavior by suddenly

crashing the program randomly during its execution. But if we add a system call after

specific intervals, hypervisor shows the correct execution of the system. This illogical

behavior was due to the fact that we were using data memory as an instruction memory in

hypervisor code. When data (guest code) is used as an executable instruction then data

and instruction caches interleaves with each other, producing illogical results. We

resolved this issue by flushing the data cache in hypervisor code whenever we needed to

execute a new guest block.

 Page boundary detection in block fetching: In user mode, program may or may not be

loaded contiguously. For example if virtual page number 0x120001 is mapped to physical

frame number 0x41A36C then virtual page number 0x120002 may or may not be present

57

at physical frame number 0x41A36D. Our previous implementation of block fetching

mechanism was on the assumption that memory is contiguous i.e. virtual page number

0x120002 will be present at physical frame number 0x41A36D. But normally this is not

the case and this causes fetching of illegal instructions. To avoid this, we implemented a

check for page boundary. If block is spanned over boundary of a page then we fetch only

part of block which is present in first page and we process remaining part in next fetch

cycle. This resolved the unusual kernel crashes.

9 IMPACT ON PROJECT PROGRESS

We had a hard time identifying some tricky bugs in design. These bugs caused unusual kernel

crashes. Source of memory corruption is hard to identify. But along with assigning IP address to

the guest network interface, we have also put some effort in reducing the booting time. For that

we had to change the timer infrastructure completely. Over all this effort has a positive impact on

project progress.

References

[1] Cavium Networks OCTEON Plus CN54/5/6/7XX, Hardware Reference Manual

CN54/5/6/7XX-HM-2.4E, January 2009, chapter 14 (CIU).

~*~*~*~

