
Development of Type-2
Hypervisor for MIPS64 Based

Systems

May 15

2014
[5th Deliverable]

This document is version 5 of first report and
includes the implementation details of current
deliverable of “Development of Type 2 Hypervisor
for MIPS64 based Systems” project, funded by
National ICT R & D Fund Pakistan. The report starts
with brief description of project objectives,
technical details of our approach, challenges and
their solutions. Complete description of testing
infrastructure, test cases and test results are
discussed later on. The report concludes with the
impact of current deliverable on the overall
project progress.

Test Cases
Result Report

High Performance Computing and Networking Laboratory HPCNL
Al-Khwarizmi Institute of Computer Science, University of Engineering and Technology Lahore Pakistan

Table of Contents

Table of Contents __ 2
Table of Figures ___ 3
1. Project Description ___ 4
2. High Level Design __ 4
3. Development Strategy __ 5
4. Challenges and Solutions __ 5
5. Block Level Execution Model ___ 7
5.1. Exception Handling ___ 8
5.1.1. SIGFPE: Floating point exception handling _______________________________________ 9
5.1.2. SYSCALL: System call handling ___ 10
5.2. Software Cache ___ 10
5.2.1. Hash Map based Storage ___ 11
5.2.2. Searching a Block ___ 11
5.2.3. Block Retrieval __ 11
5.2.4. Replacement policy __ 11
5.2.5. Potential Future Enhancements __ 11
6. Performance Optimization __ 12
6.1. Performance Tuning ___ 12
6.2. Potential Optimizations __ 13
6.2.1. In-place execution ___ 13
6.2.2. Block linking ___ 13
6.2.3. Compiler like translation optimization ___ 13
6.2.4. Data TLB Checking in epilogue ___ 14
6.2.5. Static analysis and modification __ 14
6.2.6. Performance counter mmonitoring ___ 14
7. Testing Infrastructure __ 14
7.1. Test Cases ___ 14
7.1.1. Matching system states __ 14
7.1.2. Execution path ___ 15
7.1.3. Comparing Console Output __ 15
7.1.4. Progress ___ 15
7.2. Memory Management Unit (MMU) ___ 16
7.2.1. GVA to GPA Translation __ 16
7.2.2. GPA to HVA Translation __ 17
7.2.3. Page Table ___ 17
7.2.4. Translation Lookaside Buffer (TLB) __ 17
7.3. Central Interrupt Unit (CIU) ___ 18
7.4. Test Results __ 20
7.4.1. Output of System State Matching Test ___ 20
7.4.2. Output of Execution Path Test ___ 21
7.4.3. Output of TLB Testing __ 21
7.4.4. Output of CIU Testing __ 23
7.4.5. Output on Hypervisor Console ___ 26
8. Impact on Project Progress __ 26

Table of Figures

Figure 1: Multithreaded design of Type-2 hypervisor. 5
Figure 2: Dynamic binary translation mechanism for MIPS64 VMs. 7
Figure 3: Exception handling in user mode. 9
Figure 4: Code snippet showing the emulation of exception handling. 10
Figure 5: Central Interrupt Unit. (a) Interrupt distribution from external devices to core. (b) Internal working of

CIU. Inward arrow comes from external devices and outward arrow goes to all cores. 18
Figure 6: Memory mapping between Core and external devices. 19
Figure 7: Output of system state matching test. 20
Figure 8: Output of Execution Path Test. 21
Figure 9: Searching for random TLB entry. 22
Figure 10: TLB entries in TLB table. 23
Figure 11: Output of TLB and Page Table testing. Searching entries in (a) empty page table, and (b) page table

having valid entries. (c) Whole Page table with valid translation. (d) : Reverse mapping of page table. 24
Figure 12: Output of CIU. No pending interrupt on core 1. 25
Figure 13: Output of CIU. No pending interrupt on core 0. 26
Figure 14: Output on hypervisor console. 27

1. Project Description

The main objective of this project is to develop an open source Type-2

hypervisor, for Linux-based MIPS64 embedded devices. Type-2 means that it is

a hosted hypervisor which runs on MIPS64 based Linux systems as a Linux

process. It is intended that the hypervisor will (1) support installation and

execution of un-modified MIPS64 Linux guest(s) on un-modified MIPS64 Linux

host (2) take advantage of virtualization for improved hardware utilization

and performance optimization, by using multiple MIPS cores. Our focus on MIPS

is due to the fact that MIPS based systems are lagging behind in the use of

virtualization. One of the reasons is that many MIPS based processors are

used in low end consumer devices like TV set top box, GPS navigation system

and printers. There isn’t a clear cut use case for virtualization here. But

few of the MIPS vendors target higher end embedded devices like network

switches and routers, GSM/LTE base station equipment and MIPS based blade

servers. There are clear-cut virtualization use cases for this higher-end

MIPS segment.

The development started on April 1, 2013 and first deliverable was due

after 3.5 months i.e. July 15, 2013. In first deliverable, we built the

required infrastructure. The infrastructure printed guest kernel banner on

console at the end of 1st deliverable. Second deliverable was due after 6.5

months of commencement data i.e. October 15, 2013. The milestone in 2nd

deliverable was the dynamic code patching of one sensitive guest instruction

with one safer instruction. In 3rd deliverable, dynamic code patching is

augmented by implementing cases where one sensitive instruction is replaced

by more than one instruction. In 4th deliverable, dynamic code patching is

applied on demand. In 5th deliverable, guest kernel booting completes and

starts creating user mode processes.

2. High Level Design

Type-2 hypervisor behaves like an ordinary Linux process that could be

scheduled by host operating system. However, this process has to present a

holistic view of virtual hardware for guest operating system(s) to run on it.

Virtual hardware consists of software representations of CPU cores, memory

and peripheral devices. In real hardware, CPU cores and devices work

concurrently and could be considered as processes or threads in software

representation. Multiprocessing requires inter-process communication (IPC)

whereas multithreading could be implemented using the shared address space.

Each one has its own pros and cons. We selected multithreaded design for our

hypervisor, as shown in Figure 1. It shows that each core and device is a

separate thread. Central interrupt unit (CIU) is another thread that

dispatches pending interrupts to the cores using mapped memory.

3. Development Strategy

We are following a hybrid approach to develop the hypervisor. Executable

binary is loaded in the address space of hypervisor and mapped to a known

memory address. Traditional trap-and-emulate technique is used to take

control of each instruction. Hybrid approach works as following:

1. If the instruction is privileged, it is emulated.

2. If the instruction manipulates sp, gp and/or k0 registers, it is

dynamically patched before execution.

3. Otherwise, the instruction is executed directly on hardware as it is.

4. Challenges and Solutions

Development of a hypervisor is quite challenging. Runtime systems like

hypervisor are typically sensitive to runtime overhead. Runtime overheads,

like that of emulation, result in significant performance degradation if not

taken care of. To reduce runtime overhead, our initial strategy was to

Figure 1: Multithreaded design of Type-2 hypervisor.

emulate privileged instructions only and execute rest of the instructions on

bare metal (hardware). On execution of privileged instruction in user mode, a

trap is generated (i.e. SIGILL signal is raised). We implemented a signal

handler that catches signal, fetch/decode the instruction and emulate its

behavior.

Challenge 1

Standard C/C++ libraries like glibc do not allow modification of sp ($29)

and gp ($28) registers in user mode. Non-privileged instructions dealing

with these registers can't be executed directly on hardware. Similarly, K0

($26) and K1 ($27) registers produce unexpected results because they are

used by kernel for interrupt handling and potentially not used by user

programs.

Solution 1

In addition to emulation of privileged instructions, we implemented the code

for emulation of non-privileged instructions involving gp and sp register.

Challenge 2

The next challenge was that any instruction can potentially manipulate gp and

sp registers and we may end up in emulating all instructions, resulting in

poor performance.

Solution 2

We implemented code for dynamic code patching and patched all instructions

involving sp($29), gp($28) and k1($27) registers. Patched instructions were

harmlessly executed on hardware and contents of corresponding registers were

updated later (in a trap handler).

Challenge 3

To ensure correct execution of guest code, we need to use debugger

extensively during development. With the increasing number of executed

instructions, debugging information becomes complex and hard to read. In

case of an error condition, we need to determine the instruction that

produced error. Searching the error-causing instruction between two states of

emulator is not a trivial task.

Solution 3

In this stage, we generate trap on every instruction so that debugging and

testing could be made easier. Now, the guest code is executed using a hybrid

approach: privileged instructions are emulated, instructions involving sp,

gp, k0 registers are patched and the rest are allowed to execute on hardware

unchanged.

Challenge 4

Instruction-by-instruction execution requires trap at each instruction e.g.

for TLB checking. This leads to poor performance of virtual machines. Modify-

compile-run cycle also leads to significant delays in development of

hypervisor.

Solution 4

We sought solution of this problem by executing a block of instructions at a

time. The block is fetched from the executable binary and translated to a new

block of safer instructions. The instruction for which a trap is necessary is

patched with harmless instructions on demand. In this way, a translated block

is safe to execute on bare metal without worrying about TLB checking sort of

stuff. Potentially a trap is generated at the end of a block execution

instead of each instruction of the block. Overall work flow of block level

translation is shown in Figure 2. Logging and testing mechanism is optionally

pluggable and shown with dashed lines to distinguish from the rest.

5. Block Level Execution Model

Block level execution model is demonstrated by a flow chart, as shown in

Figure 2. In this model, after initializing hypervisor, a basic block of

Figure 2: Dynamic binary translation mechanism for MIPS64 VMs.

instructions in fetched from .text section of executable binary. The block

is converted to a translated block (TB) of innocuous instructions only. TB is

cached for potential later use. Control is transferred to assembly code and

TB is executed directly on hardware. If an interrupt request occurs during TB

execution, the control is transferred to C code where the request is handled.

After request handling, control is transferred back to assembly code to

execute remaining instructions of the block. Current implementation exits on

unhandled interrupt requests. Unhandled interrupts handlers with be

implemented in later deliverables. Logging could optionally be turned on, if

required. On subsequent block fetching, a TB is first checked if present in

software cache. If present it is reused without re-translation.

5.1. Exception Handling

Exceptions cause change in normal execution flow and control is transferred

to some exception handling routines, if implemented, or crash the application

otherwise. During block execution by hypervisor, two possible exceptions

could occur:

 An instruction like trap or syscall, itself shifts control to an

exception routine. Exceptions like these are called programmed

exceptions.

 An exception like overflow is generated during the execution of

instruction. This type of exceptions is unpredictable because they are

not programmed.

The challenge is to emulate exception handling mechanism in used mode. On an

exception, control may go to host kernel and may not return back if not

emulated properly. In case of programmed exceptions, the possible emulation

is to replace exception-causing instruction with innocuous instructions that

explicitly transfer control back to a hypervisor provided handler. The

handler could identify actual (exception-causing) instruction from control

mask and handle it accordingly. In second case, a signal is raised that could

be caught to handle the exception. Once the control is available in

hypervisor, exception handling routine could be called to do the rest.

In our implementations, Perform_Exception() is called to set various

exception related registers. Exception code is set in cause register. EI,

EXL and/or ERL bits of status register are set to indicate the presence of

an exception. EPC register is set with the program counter (pc) of exception-

causing instruction. According to the exception type, exception entry point

is assigned to current pc so that new block could be fetched from there.

When the exception routine is completely executed, eret instruction is

called. eret is privileged instruction and cannot be executed on hardware as

it is (from user mode). To emulate it, we check the status register and then

accordingly set pc back to the address from where exception has actually

occurred. Figure 3 shows the overall flow and Figure 4 shows a snippet of

hypervisor code, dealing with exception handling.

Entry point for all exceptions is generic except for tlb. For example,

invalid tlb entry encountered while executing load/store instruction lead to

tlb refill exception. The entry point for tlb refill exception is different

from that of others. In case of nested exception (e.g. exception raised in an

exception routine), general exception entry point is used and corresponding

instruction pc is placed in EPC register. Two case studies are discussed

below to elaborate the implementation.

5.1.1. SIGFPE: Floating point exception handling

This exception is thrown if the result of an operation is invalid or cause

divide-by-zero, underflow or overflow. On production of such results during

guest code execution, underlying hardware generates SIGFPE signal. Our

hypervisor provide a handler to catch this signal. When control comes to this

handler, we redirect it to the exception routine of guest operating system.

Figure 3: Exception handling in user mode.

After executing exception routine, control comes back to the handler form

where it is jumped back to the immediate next instruction of exception-

causing instruction.

5.1.2. SYSCALL: System call handling

The system call is the fundamental interface between user mode programs and

Linux kernel. syscall() is a small library function that invokes the system

call whose assembly language interface has specified number and type of

arguments. Whenever the syscall instruction comes in guest code, control is

transferred to hypervisor code and then redirected to corresponding exception

handling routine of guest operating system. The remaining mechanism remains

same as above.

5.2. Software Cache

Guest code passes through a translation layer to make it amenable to run

under our hypervisor. Currently this translation is done instruction by

instruction and the output is then fused together to make a block. By

definition one block ends when control flow has more than one option to move

forward (e.g. an unconditional jump, if-else structure etc).

Translation is a fairly involved process and it is desirable to do the

translation once and re-use it on subsequent execution. There are many

Figure 4: Code snippet showing the emulation of exception handling.

repetitive code structures (e.g. loops) where one block is executed more than

once. To seize these performance opportunities, each translated cache is

stored in a software cache. Software cache is configurable and initially set

to a space for keeping 1024 blocks. A class named TranslatedBlockCache is

implemented which has rich set of functions to store, retrieve and search a

block.

5.2.1. Hash Map based Storage

Due to current hypervisor architecture, translated blocks are copied at a

pre-specified place where epilogue and prelogue are already present along

with some extra software exception handling code. To copy a block at a new

location, software cache generates a new copy and stores it in the cache.

5.2.2. Searching a Block

Software cache is capable of searching any block in time O(logn) using

HashMap that is a C++ Standard Template Library (STL). Hash maps are famous

for speedy searching.

5.2.3. Block Retrieval

Software cache retrieves a block and copies it to a specified location for

execution. Retrieval can be based on specific key provided at the time of

storage.

5.2.4. Replacement Policy

A simple random replacement policy is used to replace a block when the cache

is full. A block is randomly selected to replace it with the newly coming

block.

5.2.5. Potential Future Enhancements

Instead of copying full contents into software cache, we could compact the

cache by storing rather references of translated blocks. However, in that

case, a major revision of code is needed because the blocks will be executed

in-place instead of copying to cache.

Similarly, current block replacement policy may not be the best policy. It

could be enhanced by using least recently accessed / used (LRU) policy that

is expected to perform better. However, implementing LRU policy is not

straight forward and has its associated trade-offs.

6. Performance Optimization

Virtualization solutions are notorious for performance bottlenecks. To

optimize performance of hypervisor and guest code, it is necessary to find

these bottlenecks to tune code for performance improvement.

6.1. Performance Tuning

First step in performance tuning is to identify the most time consuming

functions of hypervisor code that are called during execution of guest code.

We collected running time of all called functions to identify the hot spots

in code. Each function is optionally instrumented to introduce time keeping

code at the start and end of each function code. It gives us total time

consumed by the function. Total time of a function also includes the time

consumed by the functions called by this function. Net (or self) time is then

calculated by subtracting the total time consumed by all callees, from the

total time of caller function. Another important performance metric is the

call count of a function i.e. how many times a function is called. Sample

output of sorted flat profile of hypervisor is shown in Table 1. The data

shows that address translation is taking much more time as compared to other

functions and it should be optimized.

To optimize address translation, we implemented a translation cache. Once we

translate an address, we place it’s translation in translation cache and when

next time translation for that address is required we don’t need to repeat

all steps to get translation. We can directly convert Guest Virtual Address

(GVA) to Host Virtual Address (HVA) using this cache. Whenever we need

translation for address, we call GVAtoHVATranslator::GVAtoHVA. First it checks

whether translation is present in cache. If present, it will directly get

translation from cache otherwise GVA is converted to Guest Physical Address

(GPA) and then GPA is converted to HVA.

Table 1: Sorted flat profile before optimization (showing most time consuming functions only).

Count Function Name Net Time(sec) Total Time(sec)

49107203 MMUTranslator::GVAtoGPA 2326.3283 4572.8963

29513958 BlockExecController::fetchnPlaceBlock 2283.8921 3057.8145

50000001 BlockExecController::handleRequest 1836.5265 5972.9834

49107203 GPAtoHVATranslator::GPA_to_HVA 1221.9575 1511.028

49107203 MMUTranslator::verify_priviliges 1063.2158 1378.4329

49107203 GVAtoHVATranslator::GVAtoHVA 852.3648 5487.4371

47218428 MMUTranslator::look_staic_translation_32bit 789.6234 896.4091

After this optimization, we generated sorted flat profile again. It shows

significant performance improvement in MMUTranslator::GVAtoGPA, as shown in

Table 2. Due to this optimization, we do not need GVA-to-GPA and GPA-to-HVA

translation frequently and lead to reduction in call count. Reduction in call

count of MMUTranslator::GVAtoGPA significantly reduces its total time.

Table 2: Sorted Flat Profile after applying an optimization.

Count Function Name Net Time(sec) Total Time(sec)

29513958 BlockExecController::fetchnPlaceBlock 2283.8921 2780.8145

50000001 BlockExecController::handleRequest 1804.6144 4351.9108

49107203 GVAtoHVATranslator::GVAtoHVA 742.5720 1468.1078

49106050 GVAtoHVATranslator::Check_cache 449.7157 449.7157

35715 MMUTranslator::GVAtoGPA 1.306426 2.650513

35716 GPAtoHVATranslator::translate_GPA_to_HVA 0.270219 0.270219

26628 MMUTranslator::look_staic_translation_32bit 0.178782 0.310867

6.2. Potential Future Optimizations

Various other optimizations are also possible to avoid performance

degradation of code executed in virtual environment. We have plans to

implement few promising techniques along the course and their effect will be

available in the future deliverables. Here we briefly describe the potential

optimization techniques.

6.2.1. In-place execution

In-place execution of blocks avoids the expensive memory-memory copy

operation. However, we should have some knowledge of control flow of guest

code for this purpose.

6.2.2. Block linking

In-place execution also necessitates the linkage of blocks so that guest code

could follow the intended execution path of code. It is expected to improve

the performance due to less intervention of hypervisor.

6.2.3. Compiler like translation optimization

In current implementation of hypervisor, execution context is confined to

single instruction of the block. Data produced/consumed by the instruction is

updated immediately. On the other hand, compilers often have a broader vision

and do not update data immediately if it is going to be consumed by some

following instruction(s). We may opt for this optimization in future

deliverables.

6.2.4. Data TLB Checking in epilogue

Moving data TLB checking to the epilogue of a block is likely to reduce the

C-assembly code jumps. Software exception handling is expensive and this

optimization could lead to infrequent software exceptions.

6.2.5. Static analysis and modification

Preprocessing of guest binaries by static analysis is likely to reduce the

runtime overhead. Static code modifications could avoid block translation at

runtime. However, there are some corner cases that could only be handled

until we have the runtime information.

6.2.6. Performance counter monitoring

Instead of using instrumentation of functions, we could fine tune performance

using performance monitoring unit (PMU) of modern hardware. The real

challenge of this optimization is to select the most appropriate performance

counters. A deep system level understanding is required to collect and

analyze the data collected using performance counters.

7. Testing Infrastructure

Testing infrastructure involves MIPS64 evaluation board with multicore Octeon

processor, hardware debugger (JTAG), development system and testing routines.

We need rigorous testing to make sure that guest kernels run in complete

isolation from each other and from host kernel. Similarly, on each

instruction execution in virtualized environment, changes to system state

should imitate the changes made by executing the same in real environment.

7.1. Test Cases

Hypervisor manipulates (i.e. emulation/code patching) guest code to use

privileged hardware resources controlled by host kernel. Hence, various test

cases are needed to make sure the consistency and integrity of guest code. Up

to current deliverable, our focus is on the test cases discussed in following

subsections.

7.1.1. Matching system states

In our case, system state consists of the values of general purpose registers

and some of coprocessor 0 (CP0) registers at a particular instance. In order

to verify the correct working of hypervisor, we run (same) executable binary

directly on Cavium MIPS64 board and through hypervisor. We get real system

state on each privileged instruction by using JTAG and compare both outputs

(hypervisor and JTAG) for verification. JTAG provides the facility of setting

hardware breakpoints at each privileged instruction to stop and take log of

system state. Without setting breakpoints, it logs the state at every

instruction execution.

7.1.2. Execution path

Due to emulation and code patching, guest code execution path may differ from

that of the same binary running directly on board. Taking Log at breakpoints

may fail due to unavailability of a priori information about execution path

of guest code. For example, if guest code sway from the path containing some

breakpoint, we would not be able to take system state at that breakpoint and

state matching test result will be misleading.

Logging system state after each instruction execution could help in avoiding

the situation of taking wrong execution path. This allows us to debug the

potential causes of error (if any) by looking at system state before and

after the execution of malfunctioning instruction. However, there is inherent

overhead of logging state at each instruction execution. There were about

339351 instructions executed by u-boot. JTAG created a file of about 6MB in

approximately 7 hours. Generated file contains data (i.e. general purpose

registers + CP0 registers content) of about 2600 states. To reduce state

logging time, we decided to use a small binary (i.e. code for irrelevant

external devices is commented out) and take log on Quick Emulator (QEMU). To

take log on QEMU, we used the expertise of another HPCNL team working on a

different project titled “System Mode Emulation in QEMU”.

7.1.3. Comparing Console Output

On reaching the stage where console is get attached with our hypervisor, the

binaries, executing within hypervisor, starts emitting messages on console.

It serves as another way of validation, whereby output of our hypervisor is

compared with that of real MIPS system.

7.1.4. Progress

The progress is tracked by identifying labeled blocks, in binary code. The

blocks are identified by following the control flow of binary. When the

instructions in one block are executed, its label is noted and control is

conditionally/unconditionally transferred to the next block in control flow.

This way we measure the progress that how many blocks have been executed and

how many left.

Emulation and code patching may lead to infinite loops in the code. For

example, if emulation/patching changes system state in such a way that

control is transferred to one of prior blocks of the current block, the

hypervisor will enter into an infinite loop. We need to avoid the situations

like this in order to make progress.

7.2. Memory Management Unit (MMU)

The purpose of memory management unit is to translate virtual addresses to

physical addresses. For virtual address translation, some rules are already

defined by physical hardware and we implemented these rules in software to

provide the virtualization of MMU used by guest operating system(s). In case

of hypervisor, it is used to translate GVA to HVA. To translate GVA to GPA,

we use same method as used by the hardware. For translation of GPA to HVA, we

use hash map to store information of all regions mapped in host virtual

address space.

7.2.1. GVA to GPA Translation

MIPS64 architecture supports both 32-bit and 64-bit Addressing modes. In 32-

bit addressing mode, address segment is defined by upper 3 bits (i.e. bits

32-29) of virtual address. If these bits are 100 then it is kseg0 region. It

is directly mapped to physical memory. If these bits are 101, address is from

kseg1 region and this is also directly mapped to physical memory. In both

previous cases, lower 20 bits represent physical address. For 110, region is

ksseg. This is not directly mapped and we have to search for it in TLB for

address translation. For 111, region is kseg3 which is not directly mapped

and we have to search TLB for valid entry to translate the address. If these

bits are 0xx then it is useg. Translation for useg is slightly different. If

ERL bit of status register of CP0 is set then useg is directly mapped to

physical memory. If ERL bit is not set then we have to check TLB to get

physical address.

In 64-bit addressing mode, address segment is defined by upper 2 bits (i.e.

bits 63-62) of virtual address. If these bits are 10, then this is xkphys

region which is directly mapped to physical memory or I/O devices. If 49th bit

of virtual address is 0 then it is memory access and lower 29 bits represent

physical address of memory. If 49th bit is 1 then it is I/0 address and data

is load/store from respective device. If these bits are 11 then it is xkseg

region which isn't directly mapped and we have to search TLB for valid

address translation. For 01, region is xsseg which is also to be searched in

TLB for translation. For 00, region is xuseg. If ERL bit of status register

of CP0 is set then it is directly mapped otherwise TLB translation would be

required.

7.2.2. GPA to HVA Translation

All physical memory regions of a machine are mapped in virtual address space

of hypervisor. Once we get the valid translation for GVA, we have to

translate that physical address to HVA in order to access valid data. After

getting valid physical address, we found the memory region or I/O device to

which it belongs. We simply find HVA for required memory region or I/O device

using hashmap. Once we get a valid GVA-to-HVA translation, we can simply

execute the respective instruction.

7.2.3. Page Table

In MIPS no physical page table is provided by hardware and page table is

solely managed by operating system. Hence, there is no need to implement page

table.

7.2.4. Translation Lookaside Buffer (TLB)

TLB is a cache used to speedup virtual address to physical address

translation. In case of type 2 hypervisor, TLB translates GVA to HVA. There

are four basic TLB functions: probe, read, write-random and write-index.

TLB probe searches for a TLB entry using the value of EntryHi register of

co-processor 0 (CP0). If valid entry is found, it places index of TLB entry

in CP0 index register, otherwise it sets probe bit of index register and

consult page table. TLB read gets value from CP0 index register and checks

the validity of data at this index. If data is valid, the components of entry

(i.e. entryHi, entryLo0, entryLo1 and page-mask) are moved to

corresponding CP0 registers. Otherwise TLB read raises invalid data

exception. TLB write-random gets index of TLB entry from CP0 random

register and checks the validity of data at the index. If entry is dirty, it

raises dirty data exception, otherwise it writes corresponding values of CP0

registers (i.e. entryHi, entryLo0, entryLo1 and page-mask) to the TLB

entry at that index. TLB write-index works same as TLB write-random except

that it gets index value from CP0 Index register.

On TLB miss, page table functions are called and GVA is searched in the page

table. If found, corresponding HVA is returned, otherwise a new memory region

is allocated using mmap() and its address is returned. Current

implementation does not impose any restriction on memory allocation (i.e. it

will be implemented in future deliverables). To reclaim guest memory, one

possible solution is to use OOM killer of guest kernel.

7.3. Central Interrupt Unit (CIU)

CIU is responsible for dispatching interrupt requests (coming) from external

devices to a particular core. CIU is discussed here in context of our test

bed i.e. Cavium Networks OCTEON Plus CN57XX evaluation board [1]. CIU

distributes a total of 37 interrupts i.e. 3 per core plus 1 for PCIe. Three

interrupts for each core set/unset bit 10, 11, 12 of Cause register of the

(a)

(b)

Figure 5: Central Interrupt Unit. (a) Interrupt distribution from external devices
to core. (b) Internal working of CIU. Inward arrow comes from external devices

and outward arrow goes to all cores.

core. Using these cause register bits, interrupt handler of a core could

prioritize different interrupts. Interrupt requests from external devices are

accumulated in a 72-bit summary vectors with naming convention

CIU_INT<core#>_SUM<0|1|4>. Summarized interrupts reach to their ultimate

destination by using corresponding 72 bits interrupt enable vector with

naming convention CIU_INT<core#>_EN<0|1> and CIU_INT<core#>_EN4_<0|1>.

Interaction of CIU, external devices and cores is shown in Figure 5 (a). CIU

reads memory mapped registers of the external devices to know about pending

interrupt requests and sets corresponding bits of cause register of target

core. Figure 5 (b) shows a simplest description of the internal working of CIU,

where interrupt identification/handling is done in software.

We have implemented a simplest abstraction of CIU. It has been integrated in

a copy of main hypervisor code and works as a separate thread (see Figure 1).

CIU is only reading CP0's cause register. As UART is not fully developed

yet, UART's memory mapped registers are artificial (for the time being). UART

writing and other devices would be implemented in future. CIU itself has set

of summary and enable registers for every core. An interrupt request goes to

only those cores that had enabled the interrupt by configuring its enable

register. In current code, CIU reads UART's Interrupt Identification Register

(IIR), extracts identity bits and set/clear the corresponding summary

registers bits. These summary registers for every core are than “AND” with

their enable registers to set or clear cause register's bit 10, 11 and 12.

In integrated code, shared memory regions are defined for CIU to work with

other components of virtual board (see Figure 1). Figure 6 shows these shared

Figure 6: Memory mapping between Core and external devices.

memory regions for core0, CIU and a single device i.e. UART. Region

overlapping and dotted lines represent the accessibility and access mode of

registers, respectively. For example, CP0 Cause register belongs to core0,

CIU can access it but UART cannot. As Cause register belongs to core0, it

can be read-written by core0 but it is read-only for CIU. IIR register of

UART is read-only for CIU and Core0, hence it is at the intersection of three

regions and have dotted boundary. CIU's summary registers are read-only for

core0, hence dotted and at the intersection of two regions. As CIU's enable

register is readable and writeable for core0 and CIU, it has solid boundary

and lies in overlapped region.

7.4. Test Results

The sample output of system state test, execution path test, TLB, page table,

CIU and hypervisor console is elaborated in this section.

7.4.1. Output of System State Matching Test

We trap at every instruction to create a state-file. This state-file is

matched with QEMU log state-file to see if any register contains different

contents. Mismatches are written in other file as shown in Figure 7.

Figure 7: Output of system state matching test.

7.4.2. Output of Execution Path Test

We face difficulties in debugging if QEMU log is missing instruction log at

different points. To ensure that the hypervisor is on the right track we

match the Program Counter (PC) values taken by hypervisor and all the PC

values taken in QEMU log, as shown in Figure 8.

7.4.3. Output of TLB Testing

To test TLB mechanism, random TLB entries are generated and searched in TLB.

A TLB miss is obvious because the entry is newly generated. Hence, probe bit

is set and TLB write-random function is called to place this entry at the

index present in CP0 random register. Random register is incremented and

entry is searched again. On TLB hit, we call TLB read to fetch the entry from

the index set by TLB probe, as shown in Figure 9.

Then TLB write-index function is called that writes TLB entry at the index

present in index register. As index register was set by TLB probe, it writes

the entry at same index that was previously written by TLB write-random. TLB

Figure 8: Output of Execution Path Test.

probe and TLB read are called again and then a new random entry is generated.

This process is repeated 640 times.

As TLB could have 64 entries at max, additional entries require a

replacement policy. After setting all entries, TLB entries are printed, as

shown in Figure 10. To test page table, a random GVA is generated and searched

in the page table. Obviously, there is no matching entry in page table

because this is the newly generated address. Hence, it maps a new memory

region and returns its address. This process is repeated several times. Each

time it maps a new region, places translation in page table and returns

translated address. The output is shown in Figure 11 (a). After creating

appropriate entries in page table, same process is repeated again for all the

generated addresses and we get valid translation now, as shown in Figure 11

(b). Then whole page table is printed in Figure 11 (c) and reverse page table,

shown in Figure 11 (d), is also managed to use for future testing of

Figure 9: Searching for random TLB entry.

hypervisor.

7.4.4. Output of CIU Testing

Artificial UART registers are read to test the code. UART registers were set

to see the effect on the 10, 11 and 12 bits of cause register. If Interrupt

ID (IID) field of IIR is 1 than there is no pending interrupt request.

Otherwise, it represents the ID of pending interrupt. In actual system

enable register is set by the system but here we are setting it explicitly.

The cause register is initialized with garbage value every time because CIU

will only change the 9, 10 and 11 bits of cause register.

In source code of Figure 12, mio_uart0 IIR register is set to 6 to show that

“Receiver line status” interrupt is present. Similarly, mio_uart1 IIR

register is set to 1 to represent no interrupt. Only core0's enable register

is set. And all the other cores have disabled the hardware interrupts. Output

Figure 10: TLB entries in TLB table.

for core 0 in Figure 12 shows that initially cause register is initialized by a

garbage value.

The summary register's 34th bit (uart 0) is set, making it 400000000.

Corresponding 34th bit in enable register is also set, which means that the

9th bit of cause will be set. The enable register for 10th and 11th bit are

(a) (b)

(c) (d)

Figure 11: Output of TLB and Page Table testing. Searching entries in (a) empty page table, and (b) page table
having valid entries. (c) Whole Page table with valid translation. (d) : Reverse mapping of page table.

zero, so cause bits would be cleared. Initially the xxxxxxxx6ac8 is changed

to xxxxxxxx66c8 by setting 9th bit and clearing 10th and 11th bit. For core 1,

as none of the enable registers are configured so three bits would be

cleared i.e. xxxxxxxx6770 changes to xxxxxxxx6370.

In Figure 13, uart0 has no interrupt and uart1 is receiving an interrupt with

id 6. For core0, bit 9 and 10 of enable register is set and cause register

is get initialized with garbage value. As summary register shows the

presence of an interrupt and bit 35 is set, it means that uart1 interrupt is

present. Its enable register should also be set for uart1, in order to pass

on the pending interrupt. Hence, bit 9 and 11 will be cleared and bit 10 will

be set for core 0 i.e. xxxxxxxxdac8 changes to xxxxxxxxcac8 in the output.

For core1, nothing is enabled so all three bits would be cleared i.e.

xxxxxxxxd770 changes to xxxxxxxxc370.

Figure 12: Output of CIU. No pending interrupt on core 1.

7.4.5. Output on Hypervisor Console

During execution, hypervisor makes a call to the code written for console

I/O. On console attachment, the binaries, executing within hypervisor, can

start printing on the hypervisor console. To validate virtual execution of

binaries, hypervisor console output (e.g. shown in Figure 14) was compared with

that of real host system console.

8. Impact on Project Progress

Hypervisor development is a complex task. We face and overcome many technical

challenges along the way. Currently we are dealing with slower booting time

of guest code. We have done performance tuning of some parts of code to

speed-up but yet many other sub-systems need to be optimized or even may need

some re-designing. As there is no separate deliverable for performance

tuning, this activity is an on-going effort throughout the project.

Figure 13: Output of CIU. No pending interrupt on core 0.

References

[1] Cavium Networks OCTEON Plus CN54/5/6/7XX, Hardware Reference Manual

CN54/5/6/7XX-HM-2.4E, January 2009, chapter 14 (CIU).

~*~*~*~

root@octeon:/home/Asad_data/hypervisor2-clone# ./dist/Debug/GNU-Linux-x86/hypervisor2-clone

 ********************* Main():Start Here *************************

 Loaded binary address...: 0x000000004b883000

REGION_ADDR...: 0x000000002ba4c000 REGION_SIZE = 0x80

REGION_ADDR...: 0x000000002ba4d000 REGION_SIZE = 0x200

REGION_ADDR...: 0x000000004bc83000 REGION_SIZE = 0x10000000

REGION_ADDR...: 0x000000005bc83000 REGION_SIZE = 0x80000

REGION_ADDR...: 0x000000005bd03000 REGION_SIZE = 0x80000

 :

 :

U-Boot 1.1.1 (Development build, svnversion: u-boot:exported, exec:exported) (Bu

BIST check passed.

Warning: Board descriptor tuple not found in eeprom, using defaults

EBH5610 board revision major:1, minor:0, serial #: unknown

OCTEON CN56XX-NSP pass 2.0, Core clock: 0 MHz, DDR clock: 0 MHz (0 Mhz data rate

DRAM: 1024 MB

Clearing DRAM........ done

Flash boot bus region not enabled, skipping NOR flash config

 :

 :

Figure 14: Output on hypervisor console.

