Development of Type-2
Hypervisor for MIPS64 Based
Systems

February 15

2014

[4th Deliverable]

This document is version 4 of first report and
includes the implementation details of current
deliverable of “Development of Type 2 Hypervisor
for MIPS64 based Systems” project, funded by
National ICT R & D Fund Pakistan. The report starts
with brief description of project objectives,
technical details of our approach, challenges and
their solutions. Complete description of testing
infrastructure, test cases and test results are
discussed later on. The report concludes with the
impact of current deliverable on the overall
project progress.

Test Cases
Result Report

/ National ICT

(727 ReDFund

High Performance Computing and Networking Laboratory HPCNL
Al-Khwarizmi Institute of Computer Science, University of Engineering and Technology Lahore Pakistan

Table of Contents

Table of Contents

Table of Figures

Project Description

High Level Design

Development Strategy

Challenges and Solutions

G W e

. Testing Infrastructure

5.1. Test Cases

5.1.1. Matching system states

5.1.2. Execution path

5.1.3. Comparing Console Output

5.1.4. Progress

5.2. Memory Management Unit (MMU)

5.2.1. GVA to GPA Translation

CLwuoVwuOowxoNUTUEAEPR_WN

5.2.2. GPA to HVA Translation

5.2.3. Page Table

5.2.4. Translation Lookaside Buffer (TLB)

5.3. Central Interrupt Unit (CIU)

5.4. Test Results

5.4.1. Output of System State Matching Test

5.4.2. Output of Execution Path Test

5.4.3. Output of TLB Testing

5.4.4. Output of CIU Testing

5.4.5. Output on Hypervisor Console

6. Impact on Project Progress

Table of Figures

Figure 1: Multithreaded Design of Type-2 hypervisor.
Figure 2. Dynamic Binary Translation Mechanism for MIPS64 VMs.

5
7

Figure 3: Central Interrupt Unit. (a) Interrupt distribution from external devices to core. (b) Internal working of

CIU. Inward arrow comes from external devices and outward arrow goes to all cores.

Figure 4: Memory mapping between Core and external devices.

Figure 5: Output of system state matching test.

Figure 6: Output of Execution Path Test.

Figure 7: Searching for random TLB entry.

Figure 8: TLB entries in TLB table.

Figure 9: Output of TLB and Page Table testing. Searching entries in (a) empty page table, and (b) page table
having valid entries. (c) Whole Page table with valid translation. (d) : Reverse mapping of page table.

Figure 10: Output of CIU. No pending interrupt on core 1.

Figure 11: Output of CIU. No pending interrupt on core 0.

Figure 12: Output on hypervisor console.

12
13
14
15
16
17

18
19
20
20

1.Project Description

The main objective of this project is to develop an open source Type-2
hypervisor, for Linux-based MIPS64 embedded devices. Type-2 means that it is
a hosted hypervisor which runs on MIPS64 based Linux systems as a Linux
process. It is intended that the hypervisor will (1) support installation and
execution of un-modified MIPS64 Linux guest(s) on un-modified MIPS64 Linux
host (2) take advantage of virtualization for improved hardware utilization
and performance optimization, by using multiple MIPS cores. Our focus on MIPS
is due to the fact that MIPS based systems are lagging behind in the use of
virtualization. One of the reasons is that many MIPS based processors are
used in low end consumer devices like TV set top box, GPS navigation system
and printers. There isn’t a clear cut use case for virtualization here. But
few of the MIPS vendors target higher end embedded devices 1like network
switches and routers, GSM/LTE base station equipment and MIPS based blade
servers. There are clear-cut virtualization use cases for this higher-end
MIPS segment.

The development started on April 1, 2013 and first deliverable was due
after 3.5 months i.e. 3July 15, 2013. In first deliverable, we built the
required infrastructure. The infrastructure printed guest kernel banner on
console at the end of 1°* deliverable. Second deliverable was due after 6.5
months of commencement data i.e. October 15, 2013. The milestone in 2nd
deliverable was the dynamic code patching of one sensitive guest instruction
with one safer instruction. In 3rd deliverable, dynamic code patching is
augmented by implementing cases where one sensitive instruction is replaced
by more than one instruction. In 4™ deliverable, dynamic code patching is
applied on demand.

2.High Level Design

Type-2 hypervisor behaves like an ordinary Linux process that could be
scheduled by host operating system. However, this process has to present a
holistic view of virtual hardware for guest operating system(s) to run on it.
Virtual hardware consists of software representations of CPU cores, memory
and peripheral devices. In real hardware, CPU cores and devices work
concurrently and could be considered as processes or threads in software
representation. Multiprocessing requires inter-process communication (IPC)
whereas multithreading could be implemented using the shared address space.
Each one has its own pros and cons. We selected multithreaded design for our
hypervisor, as shown in Figure 1. It shows that each core and device is a

separate thread. Central interrupt unit (CIU) is another thread that
dispatches pending interrupts to the cores using mapped memory.

Hypervisor (Linux Process)

Thread, Thread, Thread,
Core, ‘ k Core; oo o .~ Core, ‘
CPO,TLB, ... CPO, LB, ... CPO, LB, ...

Core
Communication

Another

Physical Memory | Daia
Thread y

/ Structure

Device
Communication

. . ® .
\ Device, ’ \ Device, ‘ Device,,
' Thread, ‘ Thread, Thread,
Figure 1: Multithreaded Design of Type-2 hypervisor.

3.Development Strategy

We are following a hybrid approach to develop the hypervisor. Executable
binary is loaded in the address space of hypervisor and mapped to a known
memory address. Traditional trap-and-emulate technique is used to take
control of each instruction. Hybrid approach works as following:

1. If the instruction is privileged, it is emulated.

2. If the instruction manipulates sp, gp and/or kO registers, it is
dynamically patched before execution.

3. Otherwise, the instruction is executed directly on hardware as it is.

4.Challenges and Solutions

Development of a hypervisor is quite challenging. Runtime systems 1like
hypervisor are typically sensitive to runtime overhead. Runtime overheads,
like that of emulation, result in significant performance degradation if not
taken care of. To reduce runtime overhead, our initial strategy was to

emulate privileged instructions only and execute rest of the instructions on
bare metal (hardware). On execution of privileged instruction in user mode, a
trap is generated (i.e. SIGILL signal is raised). We implemented a signal
handler that catches signal, fetch/decode the instruction and emulate its
behavior.

Challenge 1

Standard C/C++ libraries (e.g. glibc) do not allow modification of sp ($29)
and gp ($28) registers in user mode. Non-privileged instructions dealing
with these registers can't be executed directly on hardware. Similarly, KO
($26) and K1 ($27) registers produce unexpected results because they are
interrupt handling registers used by kernel and potentially not used by user
programs.

Solution 1
In addition to emulation of privileged instructions, we implemented the code
for emulation of non-privileged instructions involving gp and sp register.

Challenge 2

The next challenge was that any instruction can potentially manipulate gp and
sp registers and we may end up in emulating all instructions, resulting in
poor performance.

Solution 2

We implemented code for dynamic code patching and patched all instructions
involving sp($29), gp($28) and k1 ($27) registers. Patched instructions were
harmlessly executed on hardware and contents of corresponding registers were
updated later (in a trap handler).

Challenge 3

To ensure correct execution of guest code, we need to use debugger
extensively during development. With the increasing number of executed
instructions, debugging information becomes complex and hard to read. In
case of an error condition, we need to determine the instruction that
produced error. Searching the error-causing instruction between two states of
emulator is not a trivial task.

Solution 3
In this stage, we generate trap on every instruction so that debugging and
testing could be made easier. Now, the guest code is executed using a hybrid
approach: privileged instructions are emulated, instructions involving sp,
gp, kO registers are patched and the rest are allowed to execute on hardware
unchanged.

Challenge 4
Instruction-by-instruction execution requires trap at each instruction e.g.
for TLB checking. This leads to poor performance of virtual machines. Modify-
compile-run cycle also 1leads to significant delays in development of
hypervisor.

Solution 4

We sought solution of this problem by executing a block of instructions at a
time. The block is fetched from the executable binary and translated to a new
block of safer instructions. The instruction for which a trap is necessary is
patched with harmless instructions on demand. In this way, a translated block
is safe to execute on bare metal without worrying about TLB checking sort of
stuff. Potentially a trap is generated at the end of a block execution
instead of each instruction of the block. Overall work flow of block level
translation is shown in Figure 2. Logging and testing mechanism is optionally
pluggable and shown with dashed lines to distinguish from the rest.

5.Testing Infrastructure

Testing infrastructure involves MIPS64 evaluation board with multicore Octeon
processor, hardware debugger (JTAG), development system and testing routines.
We need rigorous testing to make sure that guest kernels run in complete

Cstart)
Start
Hypervisor
Initialize
Hypervisor
Fetcha block of
<\‘\ Becutable \ instructions
Display No Block yes I / lated
Message _Found? -~ Block \ Code Cache
\\\V” _ - r/ - T —
End) Jump to
— Assembly Code ~—
i ves Next Block \NE_
i isil 7
: M(l;rc:satrllrilsgm] Execute Block Encache:
i Instructions
AT on Bare Metal
1 '
H ‘ On Request Call yes
""" _ v .
,,,,, _.- [Write Log] Finished . No Handle Request
[Log &------- Return to C code Block T (e.g. TLB Checking,
file] ! Execution? Address Translations, ...}
itzes
:______________________------.---_________' ™ ~
Request
—<
Return back from where control came mw:;led?
No

Figure 2. Dynamic Binary Translation Mechanism for MIPS64 VMs.

isolation from each other and from host kernel. Similarly, on each
instruction execution in virtualized environment, changes to system state
should imitate the changes made by executing the same in real environment.

5.1.Test Cases

Hypervisor manipulates (i.e. emulation/code patching) guest code to use
privileged hardware resources controlled by host kernel. Hence, various test
cases are needed to make sure the consistency and integrity of guest code. Up
to current deliverable, our focus is on the test cases discussed in following
subsections.

5.1.1. Matching system states

In our case, system state consists of the values of general purpose registers
and some of coprocessor @ (CPO) registers at a particular instance. In order
to verify the correct working of hypervisor, we run (same) executable binary
directly on Cavium MIPS64 board and through hypervisor. We get real system
state on each privileged instruction by using JTAG and compare both outputs
(hypervisor and JTAG) for verification. JTAG provides the facility of setting
hardware breakpoints at each privileged instruction to stop and take log of
system state. Without setting breakpoints, it 1logs the state at every
instruction execution.

5.1.2. Execution path

Due to emulation and code patching, guest code execution path may differ from
that of the same binary running directly on board. Taking Log at breakpoints
may fail due to unavailability of a priori information about execution path
of guest code. For example, if guest code sway from the path containing some
breakpoint, we would not be able to take system state at that breakpoint and
state matching test result will be misleading.

Logging system state after each instruction execution could help in avoiding
the situation of taking wrong execution path. This allows us to debug the
potential causes of error (if any) by looking at system state before and
after the execution of malfunctioning instruction. However, there is inherent
overhead of logging state at each instruction execution. There were about
339351 instructions executed by u-boot. JTAG created a file of about 6MB in
approximately 7 hours. Generated file contains data (i.e. general purpose
registers + CPO registers content) of about 2600 states. To reduce state
logging time, we decided to use a small binary (i.e. code for irrelevant
external devices is commented out) and take log on Quick Emulator (QEMU). To

take log on QEMU, we used the expertise of another HPCNL team working on a
different project titled “System Mode Emulation in QEMU”.

5.1.3. Comparing Console Output

On reaching the stage where console is get attached with our hypervisor, the
binaries, executing within hypervisor, starts emitting messages on console.
It serves as another way of validation, whereby output of our hypervisor is
compared with that of real MIPS system.

5.1.4. Progress

The progress is tracked by identifying labeled blocks, in binary code. The
blocks are identified by following the control flow of binary. When the
instructions in one block are executed, its label is noted and control is
conditionally/unconditionally transferred to the next block in control flow.
This way we measure the progress that how many blocks have been executed and
how many left.

Emulation and code patching may lead to infinite loops in the code. For
example, if emulation/patching changes system state in such a way that
control is transferred to one of prior blocks of the current block, the
hypervisor will enter into an infinite loop. We need to avoid the situations
like this in order to make progress.

5.2.Memory Management Unit (MMU)

The purpose of memory management unit is to translate virtual addresses to
physical addresses. For virtual address translation, some rules are already
defined by physical hardware and we implemented these rules in software to
provide the virtualization of MMU used by guest operating system(s). In case
of hypervisor, it is used to translate guest virtual address (GVA) to host
virtual address (HVA). To translate GVA to guest physical address (GPA), we
use same method as used by the hardware. For translation of GPA to HVA, we
use hashmap to store information of all regions mapped in host virtual
address space.

5.2.1. GVA to GPA Translation

MIPS64 architecture supports both 32-bit and 64-bit Addressing modes. In 32-
bit addressing mode, address segment is defined by upper 3 bits (i.e. bits

32-29) of virtual address. If these bits are 100 then it is kseg0O region. It
is directly mapped to physical memory. If these bits are 101, address is from
ksegl region and this is also directly mapped to physical memory. In both
previous cases, lower 20 bits represent physical address. For 110, region is
ksseg. This is not directly mapped and we have to search for it in TLB for
address translation. For 111, region is kseg3 which is not directly mapped
and we have to search TLB for valid entry to translate the address. If these
bits are Oxx then it is useg. Translation for useg is slightly different. If
ERL bit of status register of CPO is set then useg is directly mapped to
physical memory. If ERL bit is not set then we have to check TLB to get
physical address.

In 64-bit addressing mode, address segment is defined by upper 2 bits (i.e.
bits 63-62) of virtual address. If these bits are 10, then this is xkphys
region which is directly mapped to physical memory or I/O devices. If 49" bit
of virtual address is © then it is memory access and lower 29 bits represent
physical address of memory. If 49" bit is 1 then it is I/@ address and data
is load/store from respective device. If these bits are 11 then it is =xkseg
region which isn't directly mapped and we have to search TLB for valid
address translation. For 01, region is xsseg which is also to be searched in
TLB for translation. For 00, region is xuseg. If ERL bit of status register
of CPO is set then it is directly mapped otherwise TLB translation would be
required.

5.2.2. GPA to HVA Translation

All physical memory regions of a machine are mapped in virtual address space
of hypervisor. Once we get the valid translation for GVA, we have to
translate that physical address to HVA in order to access valid data. After
getting valid physical address, we found the memory region or I/0 device to
which it belongs. We simply find HVA for required memory region or I/0 device
using hashmap. Once we get a valid GVA-to-HVA translation, we can simply
execute the respective instruction.

5.2.3. Page Table

In MIPS no physical page table is provided by hardware and page table is
solely managed by operating system. Hence, there is no need to implement page
table.

5.2.4. Translation Lookaside Buffer (TLB)

TLB is a <cache wused to speedup virtual address to physical address
translation. In case of type 2 hypervisor, TLB translates GVA to HVA. There

are four basic TLB functions: probe, read, write-random and write-index.
TLB probe searches for a TLB entry using the value of EntryHi register of
co-processor © (CPQ). If valid entry is found, it places index of TLB entry
in CPO index register, otherwise it sets probe bit of index register and
consult page table. TLB read gets value from CP@ index register and checks
the validity of data at this index. If data is valid, the components of entry
(i.e. entryHi, entryLoO, entryLol and page-mask) are moved to
corresponding CPO registers. Otherwise TLB read raises invalid data
exception. TLB write-random gets index of TLB entry from CPO random
register and checks the validity of data at the index. If entry is dirty, it
raises dirty data exception, otherwise it writes corresponding values of CP@
registers (i.e. entryHi, entryLo0O, entryLol and page-mask) to the TLB
entry at that index. TLB write-index works same as TLB write-random except
that it gets index value from CP@® Index register.

On TLB miss, page table functions are called and GVA is searched in the page
table. If found, corresponding HVA is returned, otherwise a new memory region
is allocated using mmap () and its address is returned. Current
implementation does not impose any restriction on memory allocation (i.e. it
will be implemented in future deliverables). To reclaim guest memory, one
possible solution is to use OOM killer of guest kernel.

5.3.Central Interrupt Unit (CIU)

CIU is responsible for dispatching interrupt requests (coming) from external
devices to a particular core. CIU is discussed here in context of our test
bed i.e. Cavium Networks OCTEON Plus CN57XX evaluation board [1]. CIU
distributes a total of 37 interrupts i.e. 3 per core plus 1 for PCIe. Three
interrupts for each core set/unset bit 10, 11, 12 of Cause register of the
core. Using these cause register bits, interrupt handler of a core could
prioritize different interrupts. Interrupt requests from external devices are
accumulated in a 72-bit summary vectors with naming convention
CIU INT<core#> SUM<O|1l|4>. Summarized interrupts reach to their ultimate
destination by using corresponding 72 bits interrupt enable wvector with
naming convention CIU INT<core#> EN<O|1> and CIU INT<core#> EN4 <0|1>.
Interaction of CIU, external devices and cores is shown in Figure 3 (a). CIU
reads memory mapped registers of the external devices to know about pending
interrupt requests and sets corresponding bits of cause register of target
core. Figure3 (b) shows a simplest description of the internal working of CIU,
where interrupt identification/handling is done in software.

We have implemented a simplest abstraction of CIU. It has been integrated in
a copy of main hypervisor code and works as a separate thread (see Figure 1).
CIU is only reading CP@'s cause register. As UART is not fully developed
yet, UART's memory mapped registers are artificial (for the time being). UART

External

Device 1 4,_> Core 0

Memory map ped
registers for L

external device 1

———————® Corel

External —
Device 2

Memary map ped ClU L = Core2

registers for

external device 2
— - =
UART -
Memory map ped

registers for ————® Core0
UART

(a)

Ciu

Interrupt enabling
registers (every core
has own set of interrupt
enabling registers,

which are configured :
by software) S Output goes)
8 | to CAUSE N
i, AND — OR |, [IP4.IP3,1P2] >
Creating Summary [of al cores
| .| registers by reading the
== memory mapped

registers of external
devices

(b)

Figure 3: Central Interrupt Unit. (a) Interrupt distribution from external devices
to core. (b) Internal working of CIU. Inward arrow comes from external devices
and outward arrow goes to all cores.

writing and other devices would be implemented in future. CIU itself has set
of summary and enable registers for every core. An interrupt request goes to
only those cores that had enabled the interrupt by configuring its enable
register. In current code, CIU reads UART's Interrupt Identification Register
(ITR), extracts identity bits and set/clear the corresponding summary

registers bits. These summary registers for every core are than “AND” with
their enable registers to set or clear cause register's bit 10, 11 and 12.

In integrated code, shared memory regions are defined for CIU to work with
other components of virtual board (see Figure 1). Figure 4 shows these shared
memory regions for core@d, CIU and a single device i.e. UART. Region
overlapping and dotted lines represent the accessibility and access mode of
registers, respectively. For example, CP@ Cause register belongs to core0,
CIU can access it but UART cannot. As Cause register belongs to core@, it
can be read-written by core@ but it is read-only for CIU. IIR register of
UART is read-only for CIU and Core@, hence it is at the intersection of three
regions and have dotted boundary. CIU's summary registers are read-only for
core@, hence dotted and at the intersection of two regions. As CIU's enable
register is readable and writeable for core@ and CIU, it has solid boundary
and lies in overlapped region.

5.4.Test Results

The sample output of system state test, execution path test, TLB, page table,
CIU and hypervisor console is elaborated in this section.

CORE 0O UART

UART's R/W registers

CPO and gerenal
purpose Registers

' UART's RO registers '

. CPO's cause

L...register |
Enable Register | | CIU's Summary |
for Core0 i Registers |

Enable and Summary
Registers for other cores CIlu

Figure 4: Memory mapping between Core and external devices.

5.4.1. Output of System State Matching Test

We trap at every instruction to create a state-file. This state-file is
matched with QEMU log state-file to see if any register contains different
contents. Mismatches are written in other file as shown in Figure5.

5.4.2. Output of Execution Path Test

We face difficulties in debugging if QEMU log is missing instruction log at
different points. To ensure that the hypervisor is on the right track we
match the Program Counter (PC) values taken by hypervisor and all the PC
values taken in QEMU log, as shown in Figure 6.

5.4.3. Output of TLB Testing

To test TLB mechanism, random TLB entries are generated and searched in TLB.
A TLB miss is obvious because the entry is newly generated. Hence, probe bit
is set and TLB write-random function is called to place this entry at the
index present in CP@ random register. Random register is incremented and
entry is searched again. On TLB hit, we call TLB read to fetch the entry from
the index set by TLB probe, as shown in Figure 7.

| | B open v h{}JSave |8 | Qunde & | 6 = & | Q Q
I\I L) Output_file.txt X |

PC_E=0xffffffffc02700c PC_0=0xffffffffc0O2700c
GP_Regs:

Ax0E00008A0EEAA0T0 ** [eelelclelelelelelelelelele]elele] Rl:
AxFIfFffffffffffrc == OxfIffffffffffffic R2:
AxffffffffcOO5b7cO #E OxffffffffcOO5b8a8 R3:
AxFIFFffffffffifie == OxfIfFffffffffffre R4 :
[epelelclelelelelclelelelelcleleke] ** [epelelclelelelelelelelelelelchelc] R5:
AxfIffffffc@O5b7cB il OxffffffffcOO5b8ba RE:
AxffffffffcOO5b7bO == OxffffffffcOO5b7/bE R7:
AxfIffffffcOOc2020 I OxffffffffcOOc205a R8:
[cpelelelelelelelclelelelelcleleley ** [eelelclelelelelcelelclelcche RS:
Ox0800002000000000 == (Ox0@00060000000008 R1G:
AxfffFffffcOO5b7bO == OxffffffffcOO5b7bE R11:
Ox0800008000000000 == Ox0e000e0000000008 RlZ:
AxffffffffcOB59al0 == OxffffffffcOB59al0 R13:
Ox0800008000000020 == Ox0E00000000000028 R14:
Ax0E00600EACEEARCE0 == (Ox0EACEEEACEEEA00E R15:
Ox080000800000002c ik Ox02000000000000 T8 R1E:
Oxffffffffc00c2020 ** Oxffffffffc0Oc2050 R17:
Ox080000800000001c o Ox0E000e0A00000008 R18:
OxffffffffcOOdIfhE xX 0x020000000E60EAAL R19:
Ax0E0000800000A018 ks [epelelclelelelelelelelcleleuRele] R20:
AxfIfFfiffc@0d9ers HE OxfIffffffcOOdseta R21:
Ax080000841 f fd5eed ok [eelelclelelelelclelelclelecIeRs R22:
Ix0E006008000680000 == (OxGEoeeenaceesaeee R23:
AxffffffffcOO5c0a0 == OxffffffffcOO5c0al R24:
AxfIffffffc@O26c8c == OxffffffffcOO26cEc R25:
Axffffffffc@0d9efB == Oxffffffffc0OdSefs R26:

Figure 5: Output of system state matching test.

I_I QOpen ~ LA_ELJSave | @ | = Unda @& “ =

.III _LI pcPath.txt * I'.IILI gemu_CompletePcPath3.txt * |

3B cB00aebc matched
39 cO0B0aeBl matched
40 cBB00aeBd matched
4] cBB00aeBB8 matched
42 cB0B0aebc matched
43 cB00ae¥0 matched
44 cBBB0ae¥4 matched
45 cB00ae¥8 matched
46 cB0B0aeyc matched
47 cB0BaeBO matched
48 cB0BaeB4 matched
49 cB0BaeB8 matched
50 cB@OBaeBc matched
51 c@OBae9@ matched
52 cB00ae94 matched
53 cB00ae98 matched
54 c@OBae9c matched
55 c@0Baeal@ matched
56 c@0Baead matched
57 c@0Baea8 matched
58 cB0Baeac matched
59 cBORaebl@ matched
60 cBOBaeb4d4 matched
61 cBORaeb8 matched
62 cB0Raebc matched
63 cBORaecl® matched
64 cBRBaecd matched
B85 cB@@Raec8 matched
66 cB@B@Baecc matched
67 hypervisor c@@Q0aedd® mismatched gemu pc clRRbO74

Figure 6: Output of Execution Path Test.

Then TLB write-index function is called that writes TLB entry at the index
present in index register. As index register was set by TLB probe, it writes
the entry at same index that was previously written by TLB write-random. TLB
probe and TLB read are called again and then a new random entry is generated.
This process is repeated 640 times.

As TLB could have 64 entries at max, additional entries require a
replacement policy. After setting all entries, TLB entries are printed, as
shown in Figure 8. To test page table, a random GVA is generated and searched
in the page table. Obviously, there is no matching entry in page table
because this is the newly generated address. Hence, it maps a new memory
region and returns its address. This process is repeated several times. Each
time it maps a new region, places translation in page table and returns
translated address. The output is shown in Figure 9 (a). After creating
appropriate entries in page table, same process is repeated again for all the
generated addresses and we get valid translation now, as shown in Figure9 (b).
Then whole page table is printed in Figure 9 (c) and reverse page table, shown
in Figure9 (d), is also managed to use for future testing of hypervisor.

File Edit View Search Terminal Help

octeon:/home/kics/Usama_Data/VExecutor# ./dist/Debug/MIPSE4-Linux-x86/vexecutor
Wired value is ©.

tlbr==Entry not found

tlbwr==TLB Written: At index 63, Random: 63
tlbp:TLEB found entry:63

tlbr==TLE read: At index 63, Random: 53
Valid:TLB Invalid exception handling
tlbwi==TLB Written: At index 63, Random: 63
tlbp:TLEB found entry:63

tlbr==TLB read: At index 63, Random: &3
Valid:TLB_Invalid exception handling

tlbr==Entry not found

tlbwr==TLB Written: At index 63, Random: O
tlbp:TLE found entry:@

tlbr==TLE read: At index @, Random: @
Valid:TLB Invalid exception handling
tlbwi==TLB Written: At index @, Random: @
tlbp:TLB found entry:0

tlbr==TLE read: At index @, Random: 0
Valid:TLB_Invalid exception handling

tlbr==Entry not found

tlbwr==TLEB Written: At index 63, Random: 1
tlbp:TLE found entry:l

tlbr==TLE read: At index 1, Random: 1
Valid:TLB Inwalid exception handling
tlbwi==TLB Written: At index 1, Random: 1
tlbp:TLE found entry:l

tlbr==TLE read: At index 1, Random: 1
Valid:TLB Invalid exception handling

tlbr==Entry not found

tlbwr==TLB Written: At index 63, Random: 2
tlbp:TLEB found entry:2

tlbr==TLB read: At index 2, Random: 2
Valid:TLB_Invalid exception handling

Figure 7: Searching for random TLB entry.

5.4.4. Output of CIU Testing

Artificial UART registers are read to test the code. UART registers were set
to see the effect on the 10, 11 and 12 bits of cause register. If Interrupt
ID (1ID) field of IIR is 1 than there is no pending interrupt request.
Otherwise, it represents the ID of pending interrupt. In actual system
enable register is set by the system but here we are setting it explicitly.
The cause register is initialized with garbage value every time because CIU
will only change the 9, 10 and 11 bits of cause register.

In source code of Figure 10, mio uartO IIR register is set to 6 to show that
“Receiver 1line status” interrupt is present. Similarly, mio uartl IIR
register is set to 1 to represent no interrupt. Only core@'s enable register
is set. And all the other cores have disabled the hardware interrupts. Output

File Edit View Search Terminal Help

Map size is 64.

Pagemask: Gx000000000018a489 EntryHi : Ox0000C60601beBfel
EntryLo@: GxE00GR0000509b6LE EntrylLol: Gx000000000cdcea8hbl
Pagemask: 0x000000000018a961 EntryHi : Ox00Q00020001bfE3df
EntrylLol: 0x0000000005kbbdR30 EntrylLol: Gx000000080ce20430
Pagemask: 0x000000000018ae39 EntryHi : Ox0000EEEE01bTE7dd
EntrylLo@: OxEEEGG00005bdeShHE EntryLol: Gx000000000ce71fhl
Pagemask: 0x000000000018b311 EntryHi : 0x0000000001ct0bdb
EntrylLo@: G0xE000000005c00330 EntryLol: Gx000000000cec3b3d
Pagemask: Gx000000000018b7e0 EntryHi : Ox0000EEEEE1cOBTI9
EntrylLo@: OxEEEEG00005c2lchl EntrylLol: Gx000000000c fl156b0
Pagemask : x0006000000818bccl EntryHi : Ox0000000001cl23d7
EntrylLol: 0x0000000005c43630 EntrylLol: Gx00Q00000080c 67230
Pagemask: Gx000000000018c199 EntryHi : Ox0000000001cla7ds
EntrylLo®: 0x0000000005c64fhO EntryLol: Ox00000G000c fbBdbo
Pagemask : Gx000000000Q818c671 EntryHi : Gx0000000001c22bd3
EntrylLof: 0x0000000005c86930 EntrylLol: Ox00Q06000000d400a930
Pagemask: Gx0000E0000018cb4o EntryHi : Ox00006E66061c2afdl
EntrylLo@: OxEEEE000005cald2bi EntrylLol: Gx000000000d05c4b0
Pagemask : x000000000018d021 EntryHi : Ox0000000001c323cft
EntryLo@: OxE000000005cc9c30 EntryLol: G0x000000000d0as030
Pagemask: Gx000000000018d410 EntryHi : Ox0000000001c3a7cd
EntrylLo®: 0x0000000005ceb5bd EntryLol: Ox000000000d0TfbbO
Pagemask : Gx000000000018d9d1 EntryHi : Gx0000000001cd4Zbch
EntrylLol: 0x0000000005d0cf30 EntrylLol: Ox00Q06000000d151730

Figure 8: TLB entries in TLB table.
for core © in Figure 10 shows that initially cause register is initialized by a
garbage value.
The summary register's 34™ bit (uart ©) is set, making it 400000000.
Corresponding 34™ bit in enable register is also set, which means that the
9" bit of cause will be set. The enable register for 10™ and 11™ bit are
zero, so cause bits would be cleared. Initially the xxxxxxxx6ac8 is changed
to xxxxxxxx66c8 by setting 9™ bit and clearing 10™ and 11* bit. For core 1,
as none of the enable registers are configured so three bits would be
cleared i.e. xxxxxxxx6770 changes to xxxxxxxx6370.
In Figure 11, uartO has no interrupt and uartl is receiving an interrupt with
id 6. For core@, bit 9 and 10 of enable register is set and cause register
is get initialized with garbage value. As summary register shows the
presence of an interrupt and bit 35 is set, it means that uartl interrupt is
present. Its enable register should also be set for uartl, in order to pass
on the pending interrupt. Hence, bit 9 and 11 will be cleared and bit 10 will
be set for core 0 i.e. xxxxxxxxdac8 changes to xxxxxxxxcac8 in the output.

File Edit View Search Terminal Help

map size is 0O
Map not found.
Mapping memory region.

Guest VA: (000E016T1la2e000 Host VA: 90007f18f9az6000

Map not found.
Mapping memory region.

Guest VA: G000R016f1d9060E Host VA: GROEO7f19f3a25000

Map not found.

Mapping memory region.

Guest VA: 0OQERO1Gf2Ef3000 Host VA: 0ROE7fl9f9a24000
B s
Map not found.

Mapping memory region.

Guest VA: (G000E01612455008 Host VA: 0G007f19f9aZ3600

Map not found.
Mapping memory region.

File Edit View Search Terminal Help

Map found.

Guest VA: GOGOEELE6T1aZelO0 Host VA: 00G07fl9f9a26000

Map found.
Guest VA: 0OGOGELET1dI0000 Host VA: 00G07fl9f9a25000

Map found.

Guest VA: BOOGEELEF20F3000 Host VA: 00007f19f9a24000

Map found.

Guest VA: BOOREELEF2455000 Host VA: 00R07f19f9a23000
A S i S R B ey
Map found.

Guest VA: 00OCOGLEF27b80OG Host VA: 00007f19f9a22000

Map found.

Guest VA: G0GOGEL6TZblaboe Host VA: G0Q07f19f9a21000

Guest VA: DOOEEG16T27bBOGE Host VA: 08007F19f9a22600 Map found.
(a) (b)
File Edit View Search Terminal Help RO (3iE W) ECCGED il AU
s e—— Guest VA: 000000167 fb60OO Host VA: 00007f19f9a03000
Hoohiisn GHbPues 5PE 3 Guest VA: 00000016f8318000 Host VA: 00007f19f9a02000
Guest VA: 0GOAO0016F1a7e600 Host VA: 08807f1979a26000 gzsefégem;: 2§£ries e
Guest VA: 00000016120f3080 Hoot VA: 80087fl9oa4086 | |[MoSt VA: 080071379a62000 Guest VA: 0000168318000
Guest VA: 08G0B016[2455000 Host VA: BBAE7T1979a23000 Host VA: 00007f19f9a03000 Guest VA: 00000016f7fb6000
Gusst VA: 0GBGB616F27b8BAE Host VA: BBGA7f199a22800 Host VA: 00007f19f9a04000 Guest VA: 00000016f7c54000
Guest VA: GBB0GB16T2bla00E Host VA: BBE7F1979a21006 Host VA: 00007f19f9a05000 Guest VA: 00000016f78f1000
Guest VA: GO0O0816f2e7cO00 Host VA: 00007fl979a20000 Host VA: 00007f19f9a0bo00 Guest VA: 00000016f758f000
Guest VA: 0BO0BO16F31d7E00 Host VA: 00G7f1979alf000 Host VA: 00007f19f9a0c000 Guest VA: 00000016f722c000
Guest VA: G000001673541000 Host VA: 00007f1979ale000 Host VA: 00007f19f9a0d000 Guest VA: 00000016f6eca®00
Guest VA: 0OGOE016f38a4000 Host VA: BBGE7f19f9aldene Host VA: 00007 f19f9a0e000 Guest VA: 00000016f6b68000
Guest VA: GO000016F3cOE000 Host VA: BOG07fl979alcB00 Host VA: 00007f19f9a0f000 Guest VA: 00000016f6805000
Guest VA: 00000016f3f58000 Host VA: G0007f19f9albooe Host VA: 00007f19f9al0000 Guest VA: 00000016f64a3000
Guest VA: 0OEAAA16f42chOO0 Host VA: 0OAB7f19f9alafnn Host VA: 00007f19f9all000 Guest VA: 00000016f6140000
Guest VA: G000E016T462d000 Host VA: BEBE7f19f9allnme Host VA: 00007f19f9a12000 Guest VA: 00000016f5dded0O
Guest VA: BOGOEG16F4990080 Host VA: BOGE7f19f9al8000 Host VA: 00007 f19f9al13000 Guest VA: 00000016f5a7c000
Guest VA: GOOOE016T4cF2000 Host VA: BBGE7f19f9al7000 Host VA: 00007 f19f9a14000 Guest VA: 00000016f5719000
Guest VA: BOGOE016F5054000 Host VA: BBGE7f19f9al6000 Host VA: 00007f19f9al15000 Guest VA: 00000016f53b7000
Guast VA: BO0BE616T53bH7000 Host VA: BBOE7fl979al15860 Host VA: 00007f19f9a16000 Guest VA: 00000016f5054000
Guast VA: GOOOE016F5719060 Host VA: BOGE7F19f9al4000 Host VA: 00007f19f3al7000 Guest VA: 00000016f4cf2000
Guest VA: BO00E016f5a7c0E0 Host VA: BB0A7fl979al3000 Host VA: 00007 f19f9al18000 Guest VA: 00000016F4990000
Guest VA: BOGOE016f5ddednn Host VA: BEGE7f19f9al2000 Host VA: 00007f19f9a19060 Guest VA: 00000016f462d000
Guest VA: GOGOE016T6140000 Host VA: BEGE7F19f9all000 Host VA: 00007f19f9alaf00 Guest VA: 00000016f42cbO00O
Guast VA: BOGOE016T64a3000 Host VA: BOGE7f19f9al0000 Host VA: 00007f19f9alb00oo Guest VA: 00000016f3f68000
Guast VA: BO0BE016TE8E5080 Host VA: BBGG7f19f9a0fO0 Host VA: 00007 f19f9alc000 Guest VA: 00000016f3c06000
Guest VA: 00000016f6b6BOOG Host WVA: 00007fl19f9alednn Host VA: 00007f19f9ald0e0 Guest VA: 00000016f38a4000
Guest VA: 00RO00L16fRecaldln Host VA: 000Q7fl9f9aldooo Host VA: 00007f19f9ale000 Guest VA: 00000016f3541000
Guest VA: 0ORE0OL6T722cO00 Host VA: 000G7fl9f9alci00 Host VA: 00007f19f9alfee0e Guest VA: 00GOOG16f31dfE0O0
Guest VA: GO000016F758TO00 Host VA: 00007fl8f9adboone Host VA: 00007 f19f9a20000 Guest VA: 00GOGO16f2e7c000
Guest VA: 00000016f78f1l000 Host WA: 00007fl5f9ad5000 Host VA: 00007f19f9a21000 Guest VA: 0GO0OO16f2b1ade0
Guest VA: 00QQEOLEf7c54000 Host VA: QOBR7fl9f9a04000 Host VA: 00007f19f9a22000 Guest VA: 00000016f27b80GO
Guest VA: 000000167 fhe0OO Host VA: BORE7f19f9a03000 Host VA: 00007f19f9a23000 Guest VA: 00000016f2455000
GuestIVA:‘000009161:8318000 Host VA: 000Q7fl9f9al2000 Host VA: 00007f19f9a24000 Guest VA: 00000016f20f3000
Eiﬁeféiemii 22£ries e Host VA: 80007f19f9a25000 Guest VA: ©0000016f1d90000
Host VA: G000719f3a02000 Guest VA: B088801678318000 ::;tszéé ?gog;f19f9azsoeo Suest. ¥A: GR00Q1GT1a2e050
(c) (d)

Figure 9: Output of TLB and Page Table testing. Searching entries in (a) empty page table, and (b) page table
having valid entries. (c) Whole Page table with valid translation. (d) : Reverse mapping of page table.

For corel,

nothing is enabled so all three bits would be cleared i.e.
xxxxxxxxd770 changes to xxxxxxxxc370.

Hh

r1:3:_:']main.C|::|:: %
15l
§fsource | Histoy | B B-E- AR EE G| P LR aw
o
212 @ int main() {
|3 uint64 t mio_uart@ iir=6, mio_uartl iir=l;
w | 14 uintg4 t cause[l2];
|15 CIU ciu;
O 18 int 1id@= @, iidl=0;;
1
18 ciu.INT_ENG[O] .set_UARTO_EN(1);
19| = GLU-INT ENG[1] t UART1 EN(1
200 r hi
21
E-Output L

[1

CIU (Build) * | CIU (Build, Run) % | CIU (Run) X
P [core @
=] cause before 7fb79fB86ac8

int sum@ 400600600

int_en@ 400000000

int_sumd4 400000000

int_end4 0 0

cause after 7fb79fBB66cE

Core 1

cause before 7fb79f886770

int sum@ 40800060

int_en0 O

int sum4 400000000

int_end4 0 0

cause after 7fb79fBB6370

Figure 10: Output of CIU. No pending interrupt on core 1.

5.4.5. Output on Hypervisor Console

During execution, hypervisor makes a call to the code written for console
I/0. On console attachment, the binaries, executing within hypervisor, can
start printing on the hypervisor console. To validate virtual execution of
binaries, hypervisor console output (e.g. shown in Figure 12) was compared with
that of real host system console.

6.Impact on Project Progress

We faced unexpected performance challenges during this deliverable and had to
put extra effort to meet the deadline. Fortunately, the project is on track
now.

&

] main.cpp X
jul
_El Source History & B- 8- 9 % & H ¥ e B | & 9
x| 13 uinté4 t mio uart® iir=1l, mio_uartl iir=6;|
0| 14 uint64 t cause[12];
| (WL CIU ciu;
z | 16 int iide= @, iid1=0;;
m| 17
18 ciu.INT_ENG[O] .set_UARTO_EN(1); for testin
19 ciu. INT_EN®[1] .set_UART1_EN(1); for testing
20 while(1){
21
22 for (int 1=0;i<24;i=1+2){
ke] crlitee"Cnrg Mol int 1 (3 /9) e ntt.
IE- Output x|

[|

CIU (Build) * | CIU (Build, Run) % | CIU (Run) X
b Core 0
& |(cause before 7f2Zb5b78dac8

int_sum@ 86EEEEEEE

int_en@ 400000000

int_sum4 860EEECE0E

int_end4 0 0

cause after 7f2b5b78cac8

Core 1

cause before 7f2b5b78d770

int_sum@ B0EEEEEEE

int_en@ O

int_sum4 B000GEEEOO

int_end4 0 0

cause after 7f2b5b78c370

Figure 11: Output of CIU. No pending interrupt on core 0.

root@octeon:/home/Asad data/hypervisor2-clone# ./dist/Debug/GNU-Linux-x86/hypervisor2-clone

R R R R SRR R R R R R R SRR R RS S Main():start Here Kh Ak Ak Ak kA Ak khkkkkhkkkxx
Loaded binary address...: 0x000000004b883000

REGION_ADDR...: 0x000000002ba4c000 REGION SIZE = 0x80

REGION_ ADDR...: 0x000000002ba4d000 REGION SIZE = 0x200

REGION ADDR...: 0x000000004bc83000 REGION SIZE = 0x10000000

REGION ADDR...: 0x000000005bc83000 REGION SIZE = 0x80000

REGION_ADDR...: 0x000000005bd03000 REGION SIZE = 0x80000

U-Boot 1.1.1 (Development build, svnversion: u-boot:exported, exec:exported) (Bu

BIST check passed.

Warning: Board descriptor tuple not found in eeprom, using defaults

EBH5610 board revision major:1l, minor:0, serial #: unknown

OCTEON CN56XX-NSP pass 2.0, Core clock: 0 MHz, DDR clock: O MHz (0 Mhz data rate
DRAM: 1024 MB

Clearing DRAM........ done

Flash boot bus region not enabled, skipping NOR flash config

Figure 12: Output on hypervisor console.

References
[1] Cavium Networks OCTEON Plus CN54/5/6/7XX, Hardware Reference Manual
CN54/5/6/7XX-HM-2.4E, January 2009, chapter 14 (CIU).

I PN INL IV

