Development of Type-2
Hypervisor for MIPS64 Based
Systems

December 15

2013

[3rd Deliverable]

This document is version 3 of first report and
includes the implementation details of current
deliverable of “Development of Type 2 Hypervisor
for MIPS64 based Systems” project, funded by
National ICT R & D Fund Pakistan. The report starts
with brief description of project objectives,
technical details of our approach, challenges and
their solutions. Complete description of testing
infrastructure, test cases and test results are
discussed later on. The report concludes with the
impact of current deliverable on the overall
project progress.

Test Cases
Result Report

High Performance Computing and Networking Laboratory HPCNL
Al-Khwarizmi Institute of Computer Science, University of Engineering and Technology Lahore Pakistan

Table of Contents

Table of Contents

Table of Figures

Project Description

High Level Design

Development Strategy

Challenges and Solutions

G W e

. Testing Infrastructure

5.1. Test Cases

5.1.1. Matching system states

5.1.2. Execution path

5.1.3. Comparing Console Output

5.1.4. Progress

5.2. Memory Management Unit (MMU)

5.2.1. GVA to GPA Translation

5.2.2. GPA to HVA Translation

5.2.3. Page Table

OO NNNNUUODEEDPWN

5.2.4. Translation Lookaside Buffer (TLB)

5.3. Central Interrupt Unit (CIU)

5.4. Test Results

5.4.1. Output of System State Matching Test

5.4.2. Output of Execution Path Test

5.4.3. Output of TLB Testing

5.4.4. Output of CIU Testing

5.4.5. Output on Hypervisor Console

6. Impact on Project Progress

Table of Figures

Figure 1: Multithreaded Design of Type-2 hypervisor.

5

Figure 2: Central Interrupt Unit. (a) Interrupt distribution from external devices to core. (b) Internal working of

CIU. Inward arrow comes from external devices and outward arrow goes to all cores.

Figure 3: Memory mapping between Core and external devices.

Figure 4: Output of system state matching test.

Figure 5: Output of Execution Path Test.

Figure 6: Searching for random TLB entry.

Figure 7: TLB entries in TLB table.

Figure 8: Output of TLB and Page Table testing. Searching entries in (a) empty page table, and (b) page table
having valid entries. (c) Whole Page table with valid translation. (d) : Reverse mapping of page table.

Figure 9: Output of CIU. No pending interrupt on core 1.

Figure 10: Output of CIU. No pending interrupt on core 0.

Figure 11: Output on hypervisor console.

11
12
13
14
15
16

17
18
19
19

1.Project Description

The main objective of this project is to develop an open source Type-2
hypervisor, for Linux-based MIPS64 embedded devices. Type-2 means that it is
a hosted hypervisor which runs on MIPS64 based Linux systems as a Linux
process. It is intended that the hypervisor will (1) support installation and
execution of un-modified MIPS64 Linux guest(s) on un-modified MIPS64 Linux
host (2) take advantage of virtualization for improved hardware utilization
and performance optimization, by using multiple MIPS cores. Our focus on MIPS
is due to the fact that MIPS based systems are lagging behind in the use of
virtualization. One of the reasons is that many MIPS based processors are
used in low end consumer devices like TV set top box, GPS navigation system
and printers. There isn’t a clear cut use case for virtualization here. But
few of the MIPS vendors target higher end embedded devices 1like network
switches and routers, GSM/LTE base station equipment and MIPS based blade
servers. There are clear-cut virtualization use cases for this higher-end
MIPS segment.

The development started on April 1, 2013 and first deliverable is due after
3.5 months i.e. 3July 15, 2013. In first deliverable, we need to build the
required infrastructure. The infrastructure should print guest kernel banner
on console, at the end of 1°* deliverable. Second deliverable is due after 6.5
months of commencement data i.e. October 15, 2013. The milestone in 2nd
deliverable is the dynamic code patching of one sensitive guest instruction
with one safer instruction. In 3rd deliverable, dynamic code patching is
augmented by implementing cases where one sensitive instruction is replaced
by more than one instructions.

2.High Level Design

Type-2 hypervisor behaves 1like an ordinary Linux process that could be
scheduled by host operating system. However, this process has to present a
holistic view of virtual hardware for guest operating system(s) to run on it.
Virtual hardware consists of software representations of CPU cores, memory
and peripheral devices. In real hardware, CPU cores and devices work
concurrently and could be considered as processes or threads in software
representation. Multiprocessing requires inter-process communication (IPC)
but multithreading could be implemented using the shared address space. Each
one has its own pros and cons. We selected multithreaded design for our
hypervisor, as shown in Figure 1. It shows that each core and device is a

separate thread. Central interrupt unit (CIU) is another thread that
dispatches pending interrupts to the cores using mapped memory.

Hypervisor (Linux Process)

Thread Thread Thread
. Core, | | Core, | o o & | Core, |
| ceo TLB? L | eeo TLBju, w - | cpo TLE:. |
"\\\ ””””””” - 3\:;; ”””””””””””” YA
R —
i é;u:crure
~g p
e } ‘\7"/’/ \
e . . W—
| Device, | | Device; | == = | Device, |
Thread, Thread, Thread,

Figure 1: Multithreaded Design of Type-2 hypervisor.

3.Development Strategy

We are following a hybrid approach to develop the hypervisor. Executable
binary is loaded in the address space of hypervisor and mapped to a known
memory address. Traditional +trap-and-emulate technique is used to take
control of each instruction. Hybrid approach works as following:

1. If the instruction is privileged, it is emulated.

2. If the instruction manipulates sp, gp and/or k0O registers, it is
dynamically patched before execution.

3. Otherwise, the instruction is executed directly on hardware as it is.

4.Challenges and Solutions

Development of a hypervisor is quite challenging. Runtime systems 1like
hypervisor are typically sensitive to runtime overhead. Runtime overheads,
like that of emulation, result in significant performance degradation if not
taken care of. To reduce runtime overhead, our initial strategy was to

emulate privileged instructions only and execute rest of the instructions on
bare metal (hardware). On execution of privileged instruction in user mode, a
trap is generated (i.e. SIGILL signal is raised). We implemented a signal
handler that catches signal, fetch/decode the instruction and emulate its
behavior.

Challenge 1

Standard C/C++ libraries (e.g. glibc) do not allow modification of sp ($29)
and gp ($28) registers in user mode. Non-privileged instructions dealing
with these registers can't be executed directly on hardware. Similarly, KO
($26) and K1 ($27) registers produce unexpected results because they are
interrupt handling registers used by kernel and potentially not used by user
programs.

Solution 1
In addition to emulation of privileged instructions, we implemented the code
for emulation of non-privileged instructions involving gp and sp register.

Challenge 2

The next challenge was that any instruction can potentially manipulate gp and
sp registers and we may end up in emulating all instructions, resulting in
poor performance.

Solution 2

We implemented code for dynamic code patching and patched all instructions
involving sp($29), gp($28) and k1($27) registers. Patched instructions were
harmlessly executed on hardware and contents of corresponding registers were
updated later (in a trap handler).

Challenge 3

To ensure correct execution of guest code, we need to use debugger
extensively during development. With the increasing number of executed
instructions, debugging information becomes complex and hard to read. In
case of an error condition, we need to determine the instruction that
produced error. Searching the error-causing instruction between two states of
emulator is not a trivial task.

Solution 3
In this stage, we generate trap on every instruction so that debugging and
testing could be made easier. Now, the guest code is executed using a hybrid
approach: privileged instructions are emulated, instructions involving sp,
gp, kO registers are patched and the rest are allowed to execute on hardware
unchanged.

5.Testing Infrastructure

Testing infrastructure involves MIPS64 evaluation board with multicore Octeon
processor, hardware debugger (JTAG), development system and testing routines.
We need rigorous testing to make sure that guest kernels run in complete
isolation from each other and from host kernel. Similarly, on each
instruction execution in virtualized environment, changes to system state
should imitate the changes made by executing the same in real environment.

5.1.Test Cases

Hypervisor manipulates (i.e. emulation/code patching) guest code to use
privileged hardware resources controlled by host kernel. Hence, various test
cases are needed to make sure the consistency and integrity of guest code. Up
to current deliverable, our focus is on the test cases discussed in following
subsections.

5.1.1. Matching system states

In our case, system state consists of the values of general purpose registers
and some of coprocessor @ (CPO) registers at a particular instance. In order
to verify the correct working of hypervisor, we run (same) executable binary
directly on Cavium MIPS64 board and through hypervisor. We get real system
state on each privileged instruction by using JTAG and compare both outputs
(hypervisor and JTAG) for verification. JTAG provides the facility of setting
hardware breakpoints at each privileged instruction to stop and take log of
system state. Without setting breakpoints, it 1logs the state at every
instruction execution.

5.1.2. Execution path

Due to emulation and code patching, guest code execution path may differ from
that of the same binary running directly on board. Taking Log at breakpoints
may fail due to unavailability of a priori information about execution path
of guest code. For example, if guest code sway from the path containing some
breakpoint, we would not be able to take system state at that breakpoint and
state matching test result will be misleading.

Logging system state after each instruction execution could help in avoiding
the situation of taking wrong execution path. This allows us to debug the
potential causes of error (if any) by looking at system state before and
after the execution of malfunctioning instruction. However, there is inherent

overhead of logging state at each instruction execution. There were about
339351 instructions executed by u-boot. JTAG created a file of about 6MB in
approximately 7 hours. Generated file contains data (i.e. general purpose
registers + (PO registers content) of about 2600 states. To reduce state
logging time, we decided to use a small binary (i.e. code for irrelevant
external devices is commented out) and take log on Quick Emulator (QEMU). To
take log on QEMU, we used the expertise of another HPCNL team working on a
different project titled “System Mode Emulation in QEMU”.

5.1.3. Comparing Console Output

On reaching the stage where console is get attached with our hypervisor, the
binaries, executing within hypervisor, starts emitting messages on console.
It serves as another way of validation, whereby output of our hypervisor is
compared with that of real MIPS system.

5.1.4. Progress

The progress is tracked by identifying labeled blocks, in binary code. The
blocks are identified by following the control flow of binary. When the
instructions in one block are executed, its label is noted and control is
conditionally/unconditionally transferred to the next block in control flow.
This way we measure the progress that how many blocks have been executed and
how many left.

Emulation and code patching may lead to infinite loops in the code. For
example, if emulation/patching changes system state in such a way that
control is transferred to one of prior blocks of the current block, the
hypervisor will enter into an infinite loop. We need to avoid the situations
like this in order to make progress.

5.2.Memory Management Unit (MMU)

The purpose of memory management unit is to translate virtual addresses to
physical addresses. For virtual address translation, some rules are already
defined by physical hardware and we implemented these rules in software to
provide the virtualization of MMU used by guest operating system(s). In case
of hypervisor, it is used to translate guest virtual address (GVA) to host
virtual address (HVA). To translate GVA to guest physical address (GPA), we
use same method as used by the hardware. For translation of GPA to HVA, we
use hashmap to store information of all regions mapped in host virtual
address space.

5.2.1. GVA to GPA Translation

MIPS64 architecture supports both 32-bit and 64-bit Addressing modes. In 32-
bit addressing mode, address segment is defined by upper 3 bits (i.e. bits
32-29) of virtual address. If these bits are 100 then it is kseg0 region. It
is directly mapped to physical memory. If these bits are 101, address is from
ksegl region and this is also directly mapped to physical memory. In both
previous cases, lower 20 bits represent physical address. For 110, region is
ksseg. This is not directly mapped and we have to search for it in TLB for
address translation. For 111, region is kseg3 which is not directly mapped
and we have to search TLB for valid entry to translate the address. If these
bits are 0Oxx then it is useg. Translation for useg is slightly different. If
ERL bit of status register of CPO is set then useg is directly mapped to
physical memory. If ERL bit is not set then we have to check TLB to get
physical address.

In 64-bit addressing mode, address segment is defined by upper 2 bits (i.e.
bits 63-62) of virtual address. If these bits are 10 then this is xkphys
region which is directly mapped to physical memory or I/O devices. If 49" bit
of virtual address is © then it is memory access and lower 29 bits represent
physical address of memory. If 49" bit is 1 then it is I/@ address and data
is load/store from respective device. If these bits are 11 then it is =xkseg
region which isn't directly mapped and we have to search TLB for valid
address translation. For 01, region is xsseg which is also to be searched in
TLB for translation. For 00, region is xuseg. If ERL bit of status register
of CPO is set then it is directly mapped otherwise TLB translation would be
required.

5.2.2. GPA to HVA Translation

All physical memory regions of a machine are mapped in virtual address space
of hypervisor. Once we get the valid translation for GVA, we have to
translate that physical address to HVA in order to access valid data. After
getting valid physical address, we found the memory region or I/0 device to
which it belongs. We simply find HVA for required memory region or I/0 device
using hashmap. Once we get a valid GVA-to-HVA translation, we can simply
execute the respective instruction.

5.2.3. Page Table

In MIPS no physical page table is provided by hardware and page table is
solely managed by operating system. Hence, there is no need to implement page
table.

5.2.4. Translation Lookaside Buffer (TLB)

TLB is a <cache used to speedup virtual address to physical address
translation. In case of type 2 hypervisor, TLB translates GVA to HVA. There
are four basic TLB functions: probe, read, write-random and write-index.
TLB probe searches for a TLB entry using the value of EntryHi register of
co-processor © (CPQ). If valid entry is found, it places index of TLB entry
in CP@ index register, otherwise it sets probe bit of index register and
consult page table. TLB read gets value from CPO index register and checks
the validity of data at this index. If data is valid, the components of entry
(i.e. entryHi, entryLo0O, entrylLol and page-mask) are moved to
corresponding CPO registers. Otherwise TLB read raises invalid data
exception. TLB write-random gets index of TLB entry from CPO random
register and checks the validity of data at the index. If entry is dirty, it
raises dirty data exception, otherwise it writes corresponding values of CP@
registers (i.e. entryHi, entrylLo0O, entrylLol and page-mask) to the TLB
entry at that index. TLB write-index works same as TLB write-random except
that it gets index value from CPO® Index register.

On TLB miss, page table functions are called and GVA is searched in the page
table. If found, corresponding HVA is returned, otherwise a new memory region
is allocated using mmap/() and its address is returned. Current
implementation does not impose any restriction on memory allocation (i.e. it
will be implemented in future deliverables). To reclaim guest memory, one
possible solution is to use OOM killer of guest kernel.

5.3.Central Interrupt Unit (CIU)

CIU is responsible for dispatching interrupt requests (coming) from external
devices to a particular core. CIU is discussed here in context of our test
bed i.e. Cavium Networks OCTEON Plus CN57XX evaluation board [1]. CIU
distributes a total of 37 interrupts i.e. 3 per core plus 1 for PCIe. Three
interrupts for each core set/unset bit 10, 11, 12 of Cause register of the
core. Using these cause register bits, interrupt handler of a core could
prioritize different interrupts. Interrupt requests from external devices are
accumulated in a 72-bit summary vectors with naming convention
CIU_INT<core#>_SUM<O0|1|4>. Summarized interrupts reach to their ultimate
destination by using corresponding 72 bits interrupt enable vector with
naming convention CIU_INT<core#>_EN<O|1> and CIU_INT<core#>_ EN4_<0|1>.

Interaction of CIU, external devices and cores is shown in Figure 2 (a). CIU
reads memory mapped registers of the external devices to know about pending
interrupt requests and sets corresponding bits of cause register of target
core. Figure2 (b) shows a simplest description of the internal working of CIU,
where interrupt identification/handling is done in software.

We have implemented a simplest abstraction of CIU. It has been integrated in
a copy of main hypervisor code and works as a separate thread (see Figure1).
CIU is only reading CP@'s cause register. As UART is not fully developed
yet, UART's memory mapped registers are artificial (for the time being). UART

External

Device 1 4,_> Core 0

Memory mapped
registers for L

external device 1

—————®™ cCorel

External ——
Device 2
Memory mapped] 18] = Core2

registers for

external device 2
|]

UART

Memory mapped
registers for —————® Core0
UART

(a)

Ciu

Interrupt enabling
registers (every core
has own set of interrupt
enabling registers,

which are configured .
by software) e Output goes "
el — OR —) [|t|=?4ﬁ£;j,'|3PEz] 7
Creating Summary — of all cores
| .| registers by reading the
== memory mapped

registers of external
devices

(b)

Figure 2: Central Interrupt Unit. (a) Interrupt distribution from external devices
to core. (b) Internal working of CIU. Inward arrow comes from external devices
and outward arrow goes to all cores.

writing and other devices would be implemented in future. CIU itself has set
of summary and enable registers for every core. An interrupt request goes to
only those cores that had enabled the interrupt by configuring its enable
register. In current code, CIU reads UART's Interrupt Identification Register
(I1IR), extracts identity bits and set/clear the corresponding summary
registers bits. These summary registers for every core are than “AND ” with
their enable registers to set or clear cause register's bit 10, 11 and 12.

In integrated code, shared memory regions are defined for CIU to work with
other components of virtual board (see Figure 1). Figure 3 shows these shared
memory regions for «core®d, CIU and a single device i.e. UART. Region
overlapping and dotted lines represent the accessibility and access mode of
registers, respectively. For example, CP@ Cause register belongs to core®,
CIU can access it but UART cannot. As Cause register belongs to core@, it
can be read-written by core® but it is read-only for CIU. IIR register of
UART is read-only for CIU and Core®, hence it is at the intersection of three
regions and have dotted boundary. CIU's summary registers are read-only for
core@, hence dotted and at the intersection of two regions. As CIU's enable
register is readable and writeable for core@ and CIU, it has solid boundary
and lies in overlapped region.

5.4.Test Results

The sample output of system state test, execution path test, TLB, page table,
CIU and hypervisor console is elaborated in this section.

CORE 0 UART

| UART's RW registers |

CPO and gerenal
purpose Registers

|UART's RO registers |

- CPOscause | ' 'g‘l’é‘;‘%‘
register S
Enable Register | | CIU's Summary -
for Core0 Registers

Enable and Summary
Registers for other cores Clu

Figure 3: Memory mapping between Core and external devices.

5.4.1. Output of System State Matching Test

We trap at every instruction to create a state-file. This state-file is
matched with QEMU log state-file to see if any register contains different
contents. Mismatches are written in other file as shown in Figure 4.

5.4.2. Output of Execution Path Test

We face difficulties in debugging if QEMU log is missing instruction log at
different points. To ensure that the hypervisor is on the right track we
match the Program Counter (PC) values taken by hypervisor and all the PC
values taken in QEMU log, as shown in Figure5.

5.4.3. Output of TLB Testing

To test TLB mechanism, random TLB entries are generated and searched in TLB.
A TLB miss is obvious because the entry is newly generated. Hence, probe bit
is set and TLB write-random function is called to place this entry at the

CGom @migomelarE Qa
| L Output_file.txt x|

PC_E=0xffffffffcOO2700c PC_0=0xffifffffcO@2700c

GP Regs:

Ox0000COREORAEARETE0 H Ox00000OCEORE0RE0E R1:
OxFFfFffffrffffffc == OxfFfFfffffffffffc RZ:
OxfFIffffffclOSbYcO Ak OxfFffffffclO5bBad R3:
OxFFfFffffrffffff8 == OxfFfFfffffffffffB R4:
Ox0000EEREERAEAREAE3 ha Ox0000EOCEERE0RO20 R5:
AxffffffffcOO5b7c8 *¥ OxffffffffcOO508bE R6:
OxFFffffffclOSb7b0 == OxffffffffclO5b7bO R7:
Axffffffffc0Oc2020 Ak OxffffffffcOOc2058 R8:
[epgelelelelelelclelelelolelelelols) H* Ox0EELEEEREREORE22 RS:
Ox00EEEEEEORAEAAEA6 == Ox0000ROEROREOREOE R10:
OxffffffffclOEb7bO == OxffffffffclO5b7bO R11:
Ox000CEEREORAEARERAE == Ox000000CEOREORE0E R12:
AxfFffffffclOE9all == OxffffffffclO59ale R13:
Ox0000COREORAEA0020 == Ox00000OCEORE0R020 R14:
Ox0EEOEEAEERAEAREEE == Ox0EEOEEEEEREAREOE R15:
Ox0000EORAEERAEO002C Wk Ox00O0EOEEOREORO T8 R16:
OxFFffffffclOc2020 H* OxfFffffffclOc2050 R17:
Ox0000EOREERAEAAA1C o 0x0000EOEEEREOREOE R18:
OxFFffffffclOdIfb8 w Ox0ECEEEEEREEAREEO1L R19:
Ox00OOEOREERAEA0E18 Mk Ox0000EOEEEREOR100 R20:
Axffffffffc0OdIafs * OxffffffffcOOdsc R21:
Ox00O00OR41 f fd5eel ¥ Ox0EECEEEEEREARE0L R22:
Ox000OEEEEORAEBAGAG == Ox0000ROEROREBEEOE RZ3:
OxfFFffffffclO5cal == OxffffffffclO5cOal R24:
OxFFffffffclO26c8c == OxTFffffffcO26cBc R25:
AxffffffffclOd9ef8 == OxffffffffclOdSef8 R26:

Figure 4: Output of system state matching test.

| | ELopen v hs_lélA“ljSave | =t | Undo (= “ =5

Illr [pcPath.txt * 1'.U gemu_CompletePcPath3.txt * |

38 cB@Raebc matched
39 cB@RaeB@ matched
40 c@@Raetd matched
41 c@ORaet8 matched
42 c@BRaebBc matched
43 cBORae7® matched
44 c@BBae74 matched
45 cBBBae?8 matched
46 cBBBae7c matched
47 cBBBae80 matched
48 cO00ae84 matched
49 c@BBae88 matched
50 c@B@Bae8c matched
51 cBBBae90 matched
52 cBBBae94 matched
53 cBBBae98 matched
54 cBBBae9c matched
55 cBBBaeal matched
56 cOQRaead matched
57 cOQ@Raea8 matched
58 c@Q@Raeac matched
59 c@Q@Raeb® matched
60 c@@Raebd4 matched
61 c@@Raeb8 matched
62 c@QRaebc matched
63 cOQRaec@ matched
64 c@QRaecd matched
65 c@@Raec8 matched
66 c@@Raecc matched
67 hypervisor c@@Qaedl® mismatched gemu pc c@EERE74

Figure 5: Output of Execution Path Test.

index present in CP@ random register. Random register 1is incremented and
entry is searched again. On TLB hit, we call TLB read to fetch the entry from
the index set by TLB probe, as shown in Figure6.

Then TLB write-index function is called that writes TLB entry at the index
present in index register. As index register was set by TLB probe, it writes
the entry at same index that was previously written by TLB write-random. TLB
probe and TLB read are called again and then a new random entry is generated.
This process is repeated 640 times.

As TLB could have 64 entries at max, additional entries require a
replacement policy. After setting all entries, TLB entries are printed, as
shown in Figure 7. To test page table, a random GVA is generated and searched
in the page table. Obviously, there is no matching entry in page table
because this is the newly generated address. Hence, it maps a new memory
region and returns its address. This process is repeated several times. Each
time it maps a new region, places translation in page table and returns
translated address. The output is shown in Figure 8 (a). After creating
appropriate entries in page table, same process is repeated again for all the
generated addresses and we get valid translation now, as shown in Figure 8 (b).
Then whole page table is printed in Figure 8 (c) and reverse page table, shown
in Figure8 (d), is also managed to use for future testing of hypervisor.

File Edit View Search Terminal Help

octeon:/home/kics/Usama_Data/VExecutor# ./dist/Debug/MIPSE4-Linux-x86/vexecutor
Wired value is 0.

tlbr==Entry not found

tlbwr==TLB Written: At index 63, Random: 63
tlbp:TLB found entry:63

tlbr==TLB read: At index 63, Random: 63
Valid:TLB_Invalid exception handling
tlbwi==TLB Written: At index 53, Random: 63
tlbhp:TLE found entry:63

tlbr=>TLB read: At index 63, Random: 63
Valid:TLB Invalid exception handling

tlbr==Entry not found

tlbwr==TLB Written: At index 63, Random: @
tlbp:TLEB found entry:0

tlbr==TLB read: At index @, Random: 0
Valid:TLB Invalid exception handling
tlbwi==TLB Written: At index 0, Random: 0
tlhp:TLE found entry:0

tlbr==TLB read: At index @, Random: 0
Valid:TLB Invalid exception handling

tlbr==Entry not found

tlbwr==TLB Written: At index 63, Random: 1
tlbp:TLEB found entry:l

tlbr==TLB read: At index 1, Random: 1
Valid:TLB Invalid exception handling
tlbwi==TLB Written: At index 1, Random: 1
tlbp:TLEB found entry:1l

tlhbr==TLB read: At index 1, Random: 1
Valid:TLB_Invalid exception handling

tlbr==Entry not found

tlbwr==TLB Written: At index 63, Random: 2
tlbp:TLEB found entry:2

tlhbr==TLB read: At index 2, Random: 2
Valid:TLB Invalid exception handling

Figure 6: Searching for random TLB entry.

5.4.4. Output of CIU Testing

Artificial UART registers are read to test the code. UART registers were set
to see the effect on the 10, 11 and 12 bits of cause register. If Interrupt
ID (1ID) field of IIR is 1 than there is no pending interrupt request.
Otherwise, it represent the ID of pending interrupt. In actual system enable
register is set by the system but here we are setting it explicitly. The
cause register is initialized with garbage value every time because CIU will
only change the 9, 10 and 11 bits of cause register.

In source code of Figure 9, mio_uartO IIR register is set to 6 to show that
“Receiver 1line status” interrupt 1is present. Similarly, mio_uartl TIIR
register is set to 1 to represent no interrupt. Only core@'s enable register
is set. And all the other cores have disabled the hardware interrupts. Output

File Edit View Search Terminal Help

Map size is 64.

Pagemask: 0x000000000018a489 EntryHi : Gx0000000001kbe8fel
EntryLo@: 0x0000000005b9b6h0 EntryLol: Gx000000000cdceBhl
Pagemask: Gx000000000018a961 EntryHi : 0x0000000001bfO3df
EntryLo®: Gx0000000005bbdA30 EntryLol: 0x000000000ce20430
Pagemask: 0x000000000018a239 EntryHi : Ox0000G00001LfE7dd
EntryLo@: 0x0000000005bde9h0 EntryLol: Ox000000000ce71lfh0
Pagemask: G0x000000000018b311 EntryHi : 0x0000000001cO0bdb
EntrylLo®: 0x0000000005cB0330 EntryLol: Gx000000000cec3b30
Pagemask: 0x000000000618b7e9 EntryHi : Ox000GEG000CLcE8Td9
EntrylLo@: Gx0000000005c2lchl EntrylLol: GxE00000000cfl56b06
Pagemask ; 0x000000000018bccl EntryHi : GxE006000001cl123d7
EntrylLo®: Gx0000000005c43630 EntryLol: @x000000000c 67230
Pagemask: 0x000000000G18c199 EntryHi : OxE00EE0000Lclar7ds
EntryLo®: Gx0000000005c64fbi EntryLol: 9x000000000c fb8dbd
Pagemask ; 0x000000000018c671 EntryHi : GxE000000001c22bd3
EntrylLo®: Gx0000000005c86930 EntryLol: @x000000000dA0a930
Pagemask : 0x000000000018cb49 EntryHi : Gx0000000001c2afdl
EntrylLoQ: Gx0000000005ca82b0 EntrylLol: Ox000GE0000dJE5c4be
Pagemask ; 0x000000000018d021 EntryHi : Ox000000000Lc323cft
EntrylLo@: 0x0000000005cc9c30 EntrylLol: GxE00000000dEac030
Pagemask: 0x000000000018d4f9 EntryHi : Gx0000000001c3a7cd
EntryLo®: Gx0000000005ceb5b0 EntryLol: @x000000000d0ffbba
Pagemask : 0x00000000G018d9d]1 EntryHi : Ox0000000001c4Z2bcb
EntrylLol: 0x0000000005d0cf30 EntryLol: 0x000000000d151730

Figure 7: TLB entries in TLB table.

for core © in Figure 9 shows that initially cause register is initialized by a
garbage value.

The summary register's 34™ bit (uart ©) is set, making it 400000000.
Corresponding 34™ bit in enable register is also set, which means that the
9" bit of cause will be set. The enable register for 10™ and 11™ bit are
zero, so cause bits would be cleared. Initially the xxxxxxxx6ac8 is changed
to xxxxxxxx66c8 by setting 9™ bit and clearing 10™ and 11™ bit. For core 1,
as none of the enable registers are configured so three bits would be
cleared i.e. xxxxxxxx6770 changes to xxxxxxxx6370.

In Figure 10, uartO has no interrupt and uartl is receiving an interrupt with
id 6. For core@, bit 9 and 10 of enable register is set and cause register
is get initialized with garbage value. As summary register shows the
presence of an interrupt and bit 35 is set, it means that uartl interrupt is
present. Its enable register should also be set for uartl, in order to pass
on the pending interrupt. Hence, bit 9 and 11 will be cleared and bit 10 will
be set for core 0 i.e. xxxxxxxxdac8 changes to xxxxxxxxcac8 in the output.

File Edit
map size is @

Map not found.

Mapping memory region.
Guest VA: G000RE16f1aZel00

View Search Terminal Help

Host WA: GROE7T19f9a26000

Map not found.
Mapping memory region.
Guest VA: 00OOEO16T1ld90000 Host VA: DOBE7T19fSazZ5000

R R R R B B B B R
Map not found.
Mapping memory region.

Guest VA: (GO00E016T20T3000 Host VA: 00007T19f5az4080

Map not found.

Mapping memory region.

Guest VA: 0000RE16f2455000 Host VA: 0ROO7T19f9a23000
B e e
Map not found.

Mapping memory region.

File Edit View Search Terminal Help
FHHHHHHHHHHHHH AR
Map found.

Guest VA: 00000016T1a2e000 Host WA: 00007f19f9a26000

Map found.

Guest VA: QROCOE1EF1dI6000 Host WA: 80007f19f9a25000

Map found.

Guest VA: 20000016T2013000 Host VA: QG007f1979a24000

Map found.

Guest VA: 0OOEOO16f2455000 Host VA: ©0007f19f9a23000
T
Map found.

Guest VA: QEOGOE1EF27bBOOA Host WA: B0007f19f9a22000

Map found.

Guest VA: @0000016T2blab0oe Host VA: QG007f19f9a21000

Guest VA: B000CO15727bB000 Host VA: 000@7719f9a22000 Map found.

(a) (b)
File Edit View Search Terminal Help gF\I,e Edit View Search Terminal Help
Table map is: |Guest vA: 980000167 fb6000 Host VA: G0OG719f9a03000
Hashmap entries are :
Guest VA: GO0B0016f1a2e00 Host VA: 0B067f19f9a26080
Guest VA: 00000016f1dI0E00 Host VA: 00067f19f9a25000 o o
Guest VA: 00000016f20f3000 Host VA: 00067f19f9a24000
Guest VA: GBO00516F2455008 Host VA: 0G07f19f9a23000 00600167 fbEO0O
Guest VA: GO0B0016f27H80GE Host VA: 00067f19f9a22000
Guest VA: 0BO0BO16fZb1a060 Host VA: 0007199221008 boDeEe16f78FLOBO
Guest VA: GO0B0016f2e7cO00 Host VA: 0B067f19f9a20080
Guest VA: 00000016f31dfE00 Host VA: 00067fl9f9alfooo
Guest VA: G000001673541000 Host VA: 00067fl19f9ale000 S c
Guest VA: G0000016738a4000 Host VA: 0B067f19f9aldeoo 9a 06
Guest VA: GO000016f3cH6000 Host VA: 00067f19f9alc0O0 00007 f19f920000 A: BDOBOO16fEBO5000
Guest VA: GO0B0016T3f68000 Host VA: 0B0G7f19f9albeoo { Fi575 3 ;
Guest VA: GO0B0016F42cbO0O Host VA: 0B067fl9f9ala0o : 00807f19f9al1000 0000AG16f6140000
Guest VA: 000000167462dO00 Host VA: 00067fl9f9al9000
Guest VA: 0000001674990000 Host VA: 0B067fl9f9al8080 Host VA: GB0O7f19f9a13000 0006H616f5a7c000
Guest VA: 00000016 F4cf2000 Host VA: 0B007fl9f9al7000 Host va: 06007f1979214000 Guast VA: 00RAAA1EFS710000
Guest VA: GO000016f5654000 Host VA: 00067fl9f9al6000 Host VA: GBEO7f19f9a15600 Guest VA: 00GO0016f53b7000
Guest VA: GO0B0016F53b76000 Host VA: BBOA7fl9f9al5E00 [Host vA: BOEE7f19f9al6000 Guest VA: 0OGE0016T5054000
Guest VA: GO0B0816F5719600 Host VA: 0B067fl9f9al4080 jiH VA: 00807f1979al7000 Guest VA: DOGE0016TF4c 2000
Guest VA: 00ROOG16f5a7c0R0 Host VA: (0007fl9f9al3000 : GEEE7F19f9a18000 Guest : POBOEEE16149960600
Guest VA: 00000016f5ddefOd Host VA: 0B067f19f9al2000 A 1575215606 Guest VA 462
Guest VA: G000001676140000 Host VA: 0B067f19f9a11000 . BEE07f19f9a1a000 Guest VA: 0OGE0016T42cbO00
Guest VA: G0000016764a3000 Host VA: 00067f19f9al0000 L. AARATEIO 5 Guect VA: 0 2 3
Guest VA: GO0B0016T6885600 Host VA: 0B0G7f19f9a0f000 . 0007 f199alc000 Guest VA: 00GO0016F3IcO6000
Guest VA: 00000016fEb6EOGEG Host WA: 00007fl9f9al=000 . BEEOE7f19f9a1dO00 Guest VA: BOEEOO1ATIRAL000
Guest VA: 0OQOO016fEecadln Host VA: (0007fl9f9atdooe © PEEO7E19f9ale000 Guest VA: DOEOGO16T3541000
Guest VA: 0OGOEO16T722cO00 Host VA: 0G007fl9f9alc@O0 . EEEO719f9al fO00 Guest VA: DOOBOG1E6T31dFOO0
Guest VA: QOQOOOLE6T7SETO00 Host VA: 0G007fl9f9abbeoo . BOEE7F10F0aZ0000 Guest VA: DODO0A1ET2e7cOnd
Guest VA: 00B00016f78£1000 Host VA: 00067f19f9a05000 Host VA: 0OBO7f1979a21000 Guest VA: DOGOBO1E251a000
Guest VA: 00QGEOLG6T7c54000 Host VA: QOOG7fl9f9a04000 Host VA: GEEET7F10f0s22000 Guost VA: BOREGEA1SF27H8060
Guest VA: BO000C16T7FbEOOO Host VA: 0B66771979a03000 Host VA: 80807f199a23000 Guest VA: 00BOOO162455000
Guest VA: G000001673318000 Host VA: BB67f137Ia02000 Host VA: 0080719792240600 Guest VA: 0OGOOGLET203060
E:Eeiézemgz 2§£ries e Host VA: GO007f19f9a25000 Guest VA: 0GPOROL6F1490AH0
Host VA: 0BG07F19fSa02000 Guest VA: GDBEAE167E318000 :°St VA BOEOTTIST9a26000 fuest VA: 0OBOBOLETLIAZE000

ap size is 32.
(c) (d)

Figure 8: Output of TLB and Page Table testing. Search

ing entries in (a) empty page table, and (b) page table

having valid entries. (c) Whole Page table with valid translation. (d) : Reverse mapping of page table.

For corel, nothing is enabled
xxxxxxxxd770 changes to xxxxxxxxc370.

so all three bits would be cleared i.e.

h

Emain.cpp b
15l
§ | Source| History | B-E-|Q @ S@ 0[P %@ p
]
S 12 @ int main() {
| 3 uint64 t mio_uart@_iir=6, mio_uartl iir=l;
w | 14 uint64 t cause[l2];
i | CIU ciu;
[18 int 1id@= @, iidl=0;;
17
18 ciu.INT ENG[O] .set UARTO EN(1);
19 @ [suAT|
20 -
2]
Ih:ﬂ Rt
LE Output X

[1

CIU (Build) X | CIU (Build, Run) ¥ | CIU (Run) X
> Core ©
g |cause before 7fb79f886ac8

int_sum@ 400000000

int _en 400000000

int sum4 400000000

int end4 0 0

cause after 7fb79fB866c8

Core 1

cause before 7fb79fB86770

int_sum@ 400000000

int_en@ @

int_sum4 400000000

int end4 0 0

cause after 7fb79f886370

Figure 9: Output of CIU. No pending interrupt on core 1.

5.4.5. Output on Hypervisor Console

During execution, hypervisor makes a call to the code written for console
I/0. On console attachment, the binaries, executing within hypervisor, can
start printing on the hypervisor console. To validate virtual execution of
binaries, hypervisor console output (e.g. shown in Figure 11) was compared with
that of real host system console.

6.Impact on Project Progress

The project is on track and making good progress. During development, we
occasionally find dependences between the milestones that 1leads to the
partial development of some future milestones, in addition to the current
milestones. This thing has no adverse impact on project progress but
advantageous in true sense.

.|

E’lmain.cpp x
E Source History FE- #H- | 8 & &M= & & B | € 9
o
o | 13 uint64_t mio_uart@ iir=l, mio_uartl iir=6;|
| 1a uint64 t cause[12];
i | (ML) CIU ciu;
=16 int iide= 0, iidl=0;;
T} 17
18 ciu.INT_ENG[O] .set_UARTO_EN(1);
19 ciu.INT ENG[1] .set UART1 EN(1);
20 hile(1l)
21
22 for (int 1=0;i<24;i=i+2){
i rotee"Cnrg "eelint Y (4 /2 =" 0"
e T |
'—T‘JOutput x
—
CIU (Build) * | CIU (Build, Run) * | CIU (Run) %
W [core 0
g cause before 7f2Zb5b78dac8

int_sum@ 800GREGG0
int_enl 400000000
int_sum4 B00ECEEEO
int_en4 0 @

cause after 7f2b5b78cach
Core 1

cause before 7f2b5b78d770
int_sum@ 800GCEGGO
int_en@ @

int_sum4 800GREGEE0
int_en4 0 @

cause after 7f2b5b78c370

Figure 10: Output of CIU. No pending interrupt on core 0.

root@octeon: /home/Asad_data/hypervisor2-clone# ./dist/Debug/GNU-Linux-x86/hypervisor2-clone

RR R IRk kb 2k kb b ki i Main():start Here RER R IRk kg kb b b b bk 2k b b i
Loaded binary address...: 0x000000004b883000

REGION_ADDR...: 0x000000002ba4c000 REGION_SIZE = 0x80

REGION_ADDR...: 0x000000002ba4d000 REGION_SIZE = 0x200

REGION_ADDR...: 0x000000004bc83000 REGION_SIZE = 0x10000000

REGION_ADDR...: 0x000000005bc83000 REGION_SIZE = 0x80000

REGION_ADDR...: 0x000000005bd03000 REGION_SIZE = 0x80000

U-Boot 1.1.1 (Development build, svnversion: u-boot:exported, exec:exported) (Bu

BIST check passed.

Warning: Board descriptor tuple not found in eeprom, using defaults

EBH5610 board revision major:1, minor:0, serial #: unknown

OCTEON CN56XX-NSP pass 2.0, Core clock: 0 MHz, DDR clock: 0 MHz (0 Mhz data rate
DRAM: 1024 MB

Clearing DRAM........ done

Flash boot bus region not enabled, skipping NOR flash config

Figure 11: Output on hypervisor console.

References
[1] Cavium Networks OCTEON Plus CN54/5/6/7XX, Hardware Reference Manual
CN54/5/6/7XX-HM-2.4E, January 2009, chapter 14 (CIU).

I VL VLY

