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1.Project Description

The main objective of this project is to develop an open source Type 2
hypervisor, for Linux-based MIPS64 embedded devices. Type-2 means that it is
a hosted hypervisor which runs on MIPS64 based Linux systems as a Linux
process. It is intended that the hypervisor will (1) support installation and
execution of un-modified MIPS64 Linux guest(s) on un-modified MIPS64 Linux
host (2) take advantage of virtualization for improved hardware utilization
and performance optimization, by using multiple MIPS cores. Our focus on MIPS
is due to the fact that MIPS based systems are lagging behind in the use of
virtualization. One of the reasons is that many MIPS based processors are
used in low end consumer devices like TV set top box, GPS navigation system
and printers. There isn’t a clear cut use case for virtualization here. But
few of the MIPS vendors target higher end embedded devices 1like network
switches and routers, GSM/LTE base station equipment and MIPS based blade
servers. There are clear-cut virtualization use cases for this higher-end
MIPS segment.

The development started on April 1, 2013 and first deliverable is due after
3.5 months i.e. 3July 15, 2013. In first deliverable, we need to build the
required infrastructure. The infrastructure should print guest kernel banner
on console, at the end of 1°' deliverable. Second deliverable is due after 6.5
months of commencement data i.e. October 15, 2013. The milestone in 2nd



deliverable is the dynamic code patching of one sensitive guest instruction
with one safer instruction.

2.Development Strategy

We are following a hybrid approach to develop the hypervisor. Executable

binary is loaded in the address space of hypervisor and mapped to a known

memory address. Traditional trap-and-emulate technique 1is wused to take

control of each instruction. Hybrid approach works as following:

1. If the instruction is privileged, it is emulated.

2. If the instruction manipulates sp, gp and/or kO registers, it is
dynamically patched before execution.

3. Otherwise, the instruction is executed directly on hardware as it is.

3.Challenges and Solutions

Development of a hypervisor is quite challenging. Runtime systems 1like
hypervisor are typically sensitive to runtime overhead. Runtime overheads,
like that of emulation, result in significant performance degradation if not
taken care of. To reduce runtime overhead, our initial strategy was to
emulate privileged instructions only and execute rest of the instructions on
bare metal (hardware). On execution of privileged instruction in user mode, a
trap is generated (i.e. SIGILL signal is raised). We implemented a signal
handler that catches signal, fetch/decode the instruction and emulate its
behavior.

Challenge 1

Standard C/C++ libraries (e.g. glibc) do not allow modification of sp ($29)
and gp ($28) registers in user mode. Non-privileged instructions dealing
with these registers can't be executed directly on hardware. Similarly, KO
($26) and K1 ($27) registers produce unexpected results because they are
interrupt handling registers used by kernel and potentially not used by user
programs.

Solution 1
In addition to emulation of privileged instructions, we implemented the code
for emulation of non-privileged instructions involving gp and sp register.

Challenge 2

The next challenge was that any instruction can potentially manipulate gp and
sp registers and we may end up in emulating all instructions, resulting in
poor performance.



Solution 2

We implemented code for dynamic code patching and patched all instructions
involving sp($29), gp($28) and k1 ($27) registers. Patched instructions were
harmlessly executed on hardware and contents of corresponding registers were
updated later (in a trap handler).

Challenge 3

To ensure correct execution of guest code, we need to use debugger
extensively during development. With the increasing number of executed
instructions, debugging information becomes complex and hard to read. In
case of an error condition, we need to determine the instruction that
produced error. Searching the error-causing instruction between two states of
emulator is not a trivial task.

Solution 2
In this stage, we generate trap on every instruction so that debugging and
testing could be made easier. Now, the guest code is executed using a hybrid
approach: privileged instructions are emulated, instructions involving sp,
gp, kO registers are patched and the rest are allowed to execute on hardware
unchanged.

4.Testing Infrastructure

Testing infrastructure involves MIPS64 evaluation board with multicore Octeon
processor, hardware debugger (JTAG), development system and testing routines.
We need rigorous testing to make sure that guest kernels run in complete
isolation from each other and from host kernel. Similarly, on each
instruction execution in virtualized environment, changes to system state
should imitate the changes made by executing the same in real environment.

4.1.Test Cases

Hypervisor manipulates (i.e. emulation/code patching) guest code to use
privileged hardware resources controlled by host kernel. Hence, various test
cases are needed to make sure the consistency and integrity of guest code. Up
to current deliverable, our focus is on the test cases discussed in following
subsections.

4.1.1. Matching system states

In our case, system state consists of the values of general purpose registers
and some of coprocessor @ (CPO) registers at a particular instance. In order
to verify the correct working of hypervisor, we run (same) executable binary



directly on Cavium MIPS64 board and through hypervisor. We get real system
state on each privileged instruction by using JTAG and compare both outputs
(hypervisor and JTAG) for verification. JTAG provides the facility of setting
hardware breakpoints at each privileged instruction to stop and take log of
system state. Without setting breakpoints, it 1logs the state at every
instruction execution.

4.1.2. Execution path

Due to emulation and code patching, guest code execution path may differ from
that of the same binary running directly on board. Taking Log at breakpoints
may fail due to unavailability of a priori information about execution path
of guest code. For example, if guest code sway from the path containing some
breakpoint, we would not be able to take system state at that breakpoint and
state matching test result will be misleading.

Logging system state after each instruction execution could help in avoiding
the situation of taking wrong execution path. This allows us to debug the
potential causes of error (if any) by looking at system state before and
after the execution of malfunctioning instruction. However, there is inherent
overhead of logging state at each instruction execution. There were about
339351 instructions executed by u-boot. JTAG created a file of about 6MB in
approximately 7 hours. Generated file contains data (i.e. general purpose
registers + CPO registers content) of about 2600 states. To reduce state
logging time, we decided to use a small binary (i.e. code for irrelevant
external devices is commented out) and take log on Quick Emulator (QEMU). To
take log on QEMU, we used the expertise of another HPCNL team working on a
different project titled “System Mode Emulation in QEMU”.

4.1.3. Comparing Console Output

On reaching the stage where console is get attached with our hypervisor, the
binaries, executing within hypervisor, starts emitting messages on console.
It serves as another way of validation, whereby output of our hypervisor is
compared with that of real MIPS system.

4.1.4. Progress

The progress is tracked by identifying labeled blocks, in binary code. The
blocks are identified by following the control flow of binary. When the
instructions in one block are executed, its label is noted and control is
conditionally/unconditionally transferred to the next block in control flow.



This way we measure the progress that how many blocks have been executed and
how many left.

Emulation and code patching may lead to infinite loops in the code. For
example, if emulation/patching changes system state in such a way that
control is transferred to one of prior blocks of the current block, the
hypervisor will enter into an infinite loop. We need to avoid the situations
like this in order to make progress.

4.1.5. Translation Lookaside Buffer (TLB)

TLB is a <cache wused to speedup virtual address to physical address
translation. In case of type 2 hypervisor, TLB translates guest virtual
address to host virtual address. There are four basic TLB functions: probe,
read, write-random and write-index. TLB probe searches for a TLB entry
using the value of EntryHi register of co-processor @ (CPQ). If valid entry
is found, it places index of TLB entry in CP@ index register, otherwise it
sets probe bit of index register and consult page table. TLB read gets value
from CPO index register and checks the validity of data at this index. If
data is valid, the components of entry (i.e. entryHi, entryLo0O, entrylol
and page-mask) are moved to corresponding CPO registers. Otherwise TLB read
raises invalid data exception. TLB write-random gets index of TLB entry from
CPO random register and checks the validity of data at the index. If entry
is dirty, it raises dirty data exception, otherwise it writes corresponding
values of CPO registers (i.e. entryHi, entryLo0O, entryLol and page-mask)
to the TLB entry at that index. TLB write-index works same as TLB write-
random except that it gets index value from CP@ Index register.

On TLB miss, page table functions are called and guest virtual address is
searched in the page table. If found, corresponding host virtual address is
returned, otherwise a new memory region is allocated using mmap() and its
address 1is returned. Current implementation does not impose any restriction
on memory allocation (i.e. it will be implemented in future deliverables). To
reclaim guest memory, one possible solution is to use OOM killer of guest
kernel.

4.1.6. Central Interrupt Unit (CIU)

CIU is responsible for dispatching interrupt requests (coming) from external
devices to a particular core. CIU is discussed here in context of our test
bed i.e. Cavium Networks OCTEON Plus CN57XX evaluation board [1]. CIU
distributes a total of 37 interrupts i.e. 3 per core plus 1 for PCIe. Three
interrupts for each core set/unset bit 10, 11, 12 of Cause register of the
core. Using these cause register bits, interrupt handler of a core could



prioritize different interrupts. Interrupt requests from external devices are
accumulated in a 72-bit summary vectors with naming convention
CIU INT<core#> SUM<O|1l|4>. Summarized interrupts reach to their ultimate
destination by using corresponding 72 bits interrupt enable vector with
naming convention CIU INT<core#> EN<O|1> and CIU INT<core#> EN4 <0|1>.
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Figure 1: Central Interrupt Unit. (a) Interrupt distribution from
external devices to core. (b) Internal working of CIU. Inward arrow is
coming from external devices and outward arrow is going to the all cores.

Interaction of CIU, external devices and cores is shown in Figure 1 (a). CIU
reads memory mapped registers of the external devices to know about pending
interrupt requests and sets corresponding bits of cause register of target



core. Figure 1 (b) shows a simplest description of the internal working of
CIU, where interrupt identification/handling is done in software.

At this stage, we implemented a simplest abstraction of CIU. Currently, CIU
is a separate unit and is only reading UART's memory mapped registers. UART
writing and other devices would be implemented in future. CIU itself has set
of summary and enable registers for every core. An interrupt request goes to
only those cores that had enabled the interrupt by configuring its enable
register. In current code, CIU reads UART's Interrupt Identification Register
(IIR), extracts identity bits and set/clear the corresponding summary
registers bits. These summary registers for every core are than “AND ” with
their enable registers to set or clear cause register's bit 10, 11 and 12.

4.2.Test Results

The sample output of system state test, execution path test, TLB, page table,
CIU and hypervisor console is elaborated in this section.

4.2.1. Output of System State Matching Test

We trap at every instruction and create a state-file. We match this state
file with gemu log state-file to see if any register contains different
contents. Mismatches are written in other file as shown in figure 2.

4.2.2. Output of Execution Path Test

We face difficulties in debugging if QEMU log is missing instruction log at
different points. To ensure that the hypervisor is on the right track we
match the Program Counter (PC) values taken by hypervisor and all the PC
values taken in gemu log, as shown in figure 3.

4.2.3. Output of TLB Testing

To test TLB mechanism, random TLB entries are generated and searched in TLB.
A TLB miss is obvious because the entry is newly generated. Hence, probe bit
is set and TLB write-random function is called to places this entry at the
index present in CP® random register. Random register 1is incremented and
entry is searched again. On TLB hit, we call TLB read to fetch the entry from
the index set by TLB probe, as shown in Figure 4.

Then TLB write-index function is called that writes TLB entry at the index
present in index register. As index register was set by TLB probe, it writes
the entry at same index that was previously written by TLB write-random. TLB
probe and TLB read are called again and then a new random entry is generated.
This process is repeated 640 times.
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PC_E=OxffffffffcOO2700c

PC_0=0xffffffffcB02700c

GP_Regs:

Ex00080EE0EOEEEET0 o CRGElelelelelelelelelelelelelelele) RL:
ExFIFffFrfffffifffc = OxTIFFfffrffifific R2:
ExfFffffffcOO5b7cO e Oxffffffffc@O5b8a8 R3:
ExFIFFfFfffffiffea = OxTIFffffrffrffrfes R4:
[ehelclelelelelcleleleleleleleloe) o [CRGeleleleleleleleleleleleleleele) R5:
ExFIFfffffcOO5b7c8 e OxTIFfffffc@05b8bO R6:
OxfFffffffcOO5b7b0 = Oxffffffffc@O5b7b0 R7:
xFIFfffffcO0c2820 el OxTIFfffffc@0c2050 R8:
helclelelelelcleleleleleelelels) o 0x0E0EEEEEEEEE0E22 R9:
Bx0008000080060800 = 0x0E00800008000080 R10:
OxffffffffcOO5b7bO = Oxffffffffc@O5b7b0 R11:
2x0008000080000000 = 0x000000E0000E0080 R12:
ExffffffffcOE59al10 = Oxffffffffc@059al0 R13:
2x0008000080000820 = 0x0000E0E00E0E0020 R14:
(b CelelelelelelcleleloleleleleleTe) = (P (Cleleleleleleleleleleleelelelel R15:
6x000000008000082¢ ek Gx0e00EEE00EE00ATE R16:
xFIFfffffcO0c2020 i OxfFFfffffc@0c2050 R17:
2x000800000000081c px R (eleleleleleleleleleleleelelele) R18:
ExFIFfffffc@0dIhs K 0x0E00E0EE0EEEE0E1 R1S9:
[ehelclelelelelceleleleleleleh ke ok R (elelelelelelelelelelelelehele) R20:
ExFIFfffffcO0dIers o OxfFFfffffc@@d5ctl R21:
@x000800041 f fd5eed ik R (eleleleleleleleleleleleTCleloh ! R22:
x00080060000080000 = 0x0E00E0EE0EE80080 R23:
OxfFffffffcOO5cBal = Oxffffffffc@05c0a0 R24:
ExFIffffffcO@026c8e = OxTIFfffffc@026c8c R25:
OxfFffffffcO0dlefs = Oxffffffffc@@dIefB R26:

Figure 2. Output of system state matching test.
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IIII £} pcPath.txt * IIIII:'I gemu_CompletePcPath3.txt > |

cB@0B8aebc matched
cB00ae60 matched
cB00ae64 matched
cB0B8aae68 matched
cB0B8aetc matched
cBA0B0ae70 matched
cB00aae74 matched
cB0B8aae78 matched
cB0B8ae7c matched
cB00a2B0 matched
cB00a=2B84 matched
cB0B8a=eB88 matched
cB0B8aeBc matched
cBA00a290 matched
cB00a294 matched
cOBBa=s98 matched
cB@0B8ae89c matched
cB@0B0a=al matched
cB00a=ad matched
cB0B8a=aB matched
cB0B8asac matched
cOBBasbd® matched
cB00asbd matched
cB@0B8aeb8 matched
cB@0B8asbc matched
cB@0B8aecl matched
cB0B0aecd matched
c@BRascB matched
cB@B0B8ascc matched
hyperviscor c@@0aedd® mismatched gemu pc cOEAObBET4

Figure 3. Output of Execution Path Test.




As TLB could have 64 entries at max, additional entries require a
replacement policy. After setting all entries, TLB entries are printed, as
shown in Figure 5.

File Edit View Search Terminal Help

octeon:/home/kics/Usama_Data/VExecutor# ./dist/Debug/MIPS64-Linux-x86/vexecutor
Wired value is 0.

tlbr==Entry not found

tlbwr==TLB Written: At index 63, Random: &3
tlbp:TLE found entry:63

tlbr==TLB read: At index 63, Random: 63
Valid:TLE Inwvalid exception handling
tlbwi==TLB Written: At index 63, Random: &3
tlbp:TLB found entry:63

tlbr==TLB read: At index &3, Random: 63
Valid:TLE Inwvalid exception handling

tlbr==Entry not found

tlbwr==TLB Written: At index 63, Random: @
tlbp:TLE found entry:0

tlbr==TLE read: At index @, Random: @
Valid:TLE_Invalid exception handling
tlbwi==TLB Written: At index @, Random: ©
tlbp:TLE found entry:0

tlbr=>TLE read: At index @, Random: ©
Valid:TLE Invalid exception handling

tlbr==Entry not found

tlbwr==TLB Written: At index 63, Random: 1
tlbp:TLE found entry:l

tlbr==TLB read: At index 1, Random: 1
Valid:TLE Inwvalid exception handling
tlbwi==TLB Written: At index 1, Random: 1
tlbp:TLE found entry:1l

tlbr==TLB read: At index 1, Random: 1
Valid:TLE Inwvalid exception handling

tlbr==Entry not found

tlhwr==TLB Written: At index &3, Random: 2
tlbp:TLE found entry:2

tlbr==TLE read: At index 2, Random: 2
Valid:TLE Invalid exception handling

Figure 4. Searching for random TLB entry.

To test page table, a random guest virtual address is generated and searched
in the page table. Obviously, there is no matching entry in page table
because this is the newly generated address. Hence, it maps a new memory
region and returns its address. This process is repeated several times. Each
time it maps a new region, places translation in page table and returns
translated address. The output is shown in Figure 6 (a). After creating
appropriate entries in page table, same process is repeated again for all the
generated addresses and we get valid translation now, as shown in Figure 6
(b). Then whole page table is printed in Figure 6 (c) and reverse page table,
shown in Figure 6 (d), 1is also managed to use for future testing of
hypervisor.



File Edit View Search Terminal Help

Map size is 64.

Pagemask: 0x000000006018a489 EntryHi : OxG0000E0EE0E01be8fel
EntrylLo@: Ox0000000065bSbELE EntryLol: Gx0000C0000cdca8hbi
Pagemask : 0x000000000018a961 EntryHi : Ox0000000001bfO3df
EntrylLo®: 0x0000000005bbdA30 EntrylLel: @x000000000ce20430
Pagemask: 0x000000000018ae39 EntryHi : Ox000GEEEEE0O1bTE7dd
EntrylLo@: O0x0000000005bdeShe EntryLol: Ox0000C0000ce71fhl
Pagemask : 0x000000000018b311 EntryHi : 9x0000000001c00bdb
EntrylLo@;: 0x0000000005c00330 EntrylLol: Ox000000000cec3bn3d
Pagemask: 0x000000006018b7e9 EntryHi : OxGO0GEEEEEO0O1cOBTIY
EntrylLo@: Ox0000000065c2lchl EntryLol: Gx0000C0000c f156b0
Pagemask : 0x000000000018bccl EntryHi : Ox0000000001cl123d7
EntrylLo®: 0x0000000005c43630 EntrylLel: @x000000000c 67230
Pagemask: 0x000000006618c199 EntryHi : Ox00000EEE0E0L1cla7ds
EntrylLo@: 0x0000000005c64fhe EntrylLol: Ox000600000c fbBdbA
Pagemask : 0x000000006G18cH71 EntryHi : Ox0000000001c2Zbd3
EntrylLol: 0x0000000005c86930 EntrylLeol: Ox000000000d00a930
Pagemask: 0x000000006018ch4o EntryHi : OxG0GEEEEE01c2afdl
EntryLo@: Ox0000000065ca82b0 EntryLol: Ox0000C0000dA5c4bE
Pagemask : 0x000000000018d021 EntryHi : Ox0000000001c323cft
EntryLo@; 0x0000000005cc9c30 EntrylLol: Ox000000000d0ae030
Pagemask: 0x000000000018d4f0 EntryHi : Ox0000000001c3a7cd
EntrylLo®@: 0x0000000005ceb5b0 EntrylLol: Ox000000000d0TfbbA
Pagemask : 0x000000006G18d9d1 EntryHi : Ox0000000001cd4Zbch
EntrylLol: 0x0000000005d0cf30 EntrylLeol: Ox000800000d151730

Figure 5: TLB entries in TLB table.

4.2.4. Output of CIU Testing

Artificial UART registers are read to test the code. UART registers were set
to see the effect on the 10,11 and 12 bits of cause register. If Interrupt
ID (IID) field of IIR is 1 than there is no pending interrupt request.
Otherwise, it represent the ID of pending interrupt. In actual system enable
register is set by the system but here we are setting it explicitly. The
cause register is initialized with garbage value every time because CIU will
only change the 9, 10 and 11 bits of cause register.

In source code of figure 7, mio uartO IIR register is set to 6 to show that
“Receiver 1line status” interrupt is present. Similarly, mio uartl IIR
register is set to 1 to represent no interrupt. Only core@'s enable register
is set. And all the other cores have disabled the hardware interrupts. Output
for core © in Figure 7 shows that initially cause register is initialized by
a garbage value.



File Edit View Search Terminal

map size is 0O

Map not found.

Mapping memory region.
Guest VA: GO0ORE16flaZelO

View Search Terminal Help File Edit Help

Map found.
Guest VA: 000ROOLEflaZefoR

Host VA: 00G07fl9f9a26000
Host VA: 00007f19T9a26000 AR AR R

Map found.
Guest VA: 0OGOGELET1dI0000

Map not found. Host VA: BB007f19f9a25000
Mapping memory region.

Guest VA: G0000816f1d96000

Host VA: G0807f19f9a25000 Map found.

Guest VA: BOOGEELEF20F3000

Host VA: 00007f19f9a24000

Map not found.

Mapping memory region.
Guest VA: 000ORE16f20f3000 Host VA: 0RO07fl9f9a24000
I
Map not found.

Mapping memory region.
Guest VA: G000ORE16f2455000

Map found.

Guest VA: BOOREELEF2455000 Host VA: 00R07f19f9a23000
A S i S R B ey
Map found.

Guest VA: 00OCOGLEF27b80OG Host VA: 00007f19f9a22000

Host VA: 00007f19f9a23000

Map found.
Guest VA: GOGOGELE6TZb1aboe

Map not found. Host VA: G0Q07f19f9a21000

Mapping memory region.

Guest VA: 00000616727bB0G0 Host VA: G0807f19F9a22000 Map found.
(a) (b)
File Edit View Search Terminal Help AE Bl WG S il WA
s —— Guest VA: 000000167 fb6000 Host VA: 00007f19f9a03000
Hoohiicn GHbries 598 3 Guest VA: 00000016f8318000 Host VA: 00007f19f9a02000
Guast VA: GOG0601Ff1aze000 Host VA: 00607f1979a26000 gzsefgzemzz 2i£ries e
Guect VA: 0000B016120f3000 oot VA: 00067floroaoq0s0 | oSt VA: 006677139a62000 Guest VA: 0000168318000
Guest VA: 0800B016[2455000 Host VA: BBAE7T1979a23000 Host VA: 00007f19f9a03000 Guest VA: 00000016f7fb6000
Gusst VA: GBGB616F27b8BAE Host VA: BBGA7f199a22800 Host VA: 00007f19f9a04000 Guest VA: 00000016f7c54000
Guest VA: GBBORE16T2bla00E Host VA: BBE7F1979a21006 Host VA: 00007f19f9a05000 Guest VA: 00000016f78f1000
Guest VA: GO0O0016f2e7cO00 Host VA: 00007fl979a20000 Host VA: 00007f19f9a0b000 Guest VA: 00000016f758f000
Guest VA: G0000016731dfE00 Host VA: 00007f19f9alfooo Host VA: 00007f19f9a0c000 Guest VA: 00000016f722c000
Guest VA: GOGOE016F3541000 Host VA: BOGE7f19f9aledno Host VA: 00007 f19f9a0do0o0 Guest VA: 00000016f6ecad00
Guest VA: 0OGOGE16T38a4000 Host VA: 00AA7F1979aldOA0e Host VA: 00007f19f9a0e000 Guest VA: 00000016f6b68000
Guast VA: BOGOE016F3cE6080 Host VA: BOGE7f19f9alcOOO Host VA: 00007 f19f9a0f000 Guest VA: 00000016f6805000
Guest VA: 0OEBBO16f3fE8000 Host VA: 0OAB7fl9f9albooa Host VA: 00007f19f9al0000 Guest VA: 00000016f64a3000
Guest VA: 0OAGOO1E6TAZcHOBO Host YA: 000607f19f9alatnn Host VA: 00007f19f9all000 Guest VA: 00000016f6140000
Guest VA: GO00E016T462d000 Host VA: BEBE7f19f9allnme Host VA: 00007 f19f9a12000 Guest VA: 00000016f5dde00O
Guest VA: BOGOEG16F4990080 Host VA: BOGE7f19f9al8000 Host VA: 00007f19f9a13000 Guest VA: 00000016f5a7c000
Guest VA: GOGOE016T4cf2000 Host VA: BBGE7f19f9al7000 Host VA: 00007 f19f9a14000 Guest VA: 00000016f5719000
Guast VA: GOGOE016F5054000 Host VA: BBGE7f19f9al6000 Host VA: 00007 f19f9a15000 Guest VA: 00000016f53b7000
Guast VA: BO0BE616T53bH7000 Host VA: BBOE7fl979al15860 Host VA: 00007 f19f9a16000 Guest VA: 00000016f5054000
Guast VA: GO0OE016F5719060 Host VA: BOGE7F19f9al4000 Host VA: 00007f19f9al17000 Guest VA: 00000016f4c f2000
Guest VA: 00R00016f5a7c000 Host VA: G0007f19f9al3000 Host VA: 00007f19f9al8000 Guest VA: 00000016f4990000
Guest VA: 00R00016f5ddedrnd Host VA: BGO007fl9f9alz000 Host VA: 00007f19f9al9000 Guest VA: 00000016f462d000
Guest VA: 0OGOE016T6140000 Host VA: BBGE7F19f9al1000 Host VA: 00007f19f9alat00 Guest VA: 00000016f42cb0OO
Guast VA: BOGOE016T64a3000 Host VA: BOGE7f19f9al0000 Host VA: 00007f19f9alb000 Guest VA: 00000016f3f68000
Guest VA: 00OEOO16TEBE5000 Host VA: 00007fl9f9alfooo Host VA: 00007f19f9alc000 Guest VA: 00000016f3cO6000
Guest VA: 00000016f6b6BOOGE Host WVA: 00007fl19f9alednn Host VA: 00007f19f9ald0e0 Guest VA: 00000016f38a4000
Guest VA: 00R000L16fRecaldln Host VA: 000Q7fl9f9aldooo Host VA: 00007f19f9ale000 Guest VA: 00000016f3541000
Guest VA: 000E0016T722ci00 Host WA: 00007flef9alcion Host VA: 00007f19f9alf000 Guest VA: 00000016f31df000
Guest VA: GO000016F758TO00 Host VA: 00007fl8f9adboone Host VA: 00007f19f9a20000 Guest VA: 00000016f2e7c000
Guest VA: 00000016f78f1l000 Host WA: 00007fl5f9ad5000 Host VA: 00007f19f9a21000 Guest VA: 00000016f2b1a0t00
Guast VA: BO0BE016T7c54000 Host VA: BBGE719f9a04000 Host VA: 00007f19f9222000 Guest VA: 00000016F27b8000
Guast VA: GO0O60167 FbEOEE Host VA: BOGE719f9a03000 Host VA: 00007f19f9a23000 Guest VA: 00000016F2455000
Guest VA: 0900001678318000 Host VA: 0OGE7f19f9aB2000 Host VA: 00007f19f9a24000 Guest VA: 000000162073000
Eiﬁe?éiemiﬁ 22£ries e Host VA: 90007f19f9a25000 Guest VA: 00000016F1d90060
Host VA: 88007f19f0202600 Guest VA: BABEEOLETE318808 ::itszéé ?Seggf19f9azeeoo Gomst. ¥A: 90R00G16T1a2e000
() (d)

Figure 6: Output of TLB and Page Table testing. Searching entries in (a) empty page table, and (b) page table

having valid entries. (c) Whole Page table with valid translation. (d) : Reverse mapping of page table.

The summary register's 34th bit (uart @) is set, making it 400000000.
Corresponding 34th bit in enable register is also set, which means that the
9th bit of cause will be set. The enable register for 10th and 11th bit are
zero, so cause bits would be cleared.

Initially the xxxxxxxx6ac8 1is changed to xxxxxxxx66c8 by setting 9th bit
and clearing 10th and 11th bit. For core 1, as none of the enable registers
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r1:3:_:']main.C|::|:: %
15l
o | Source History | & [ - -l R SR DG | e R & o
o
212 @ int main() {
|3 uint64 t mio_uart@ iir=6, mio_uartl iir=l;
w | 14 uintg4 t cause[l2];
|15 CIU ciu;
O 18 int iid@= 0, iidl=0;;
17
18 ciu.INT_ENG[O] .set_UARTG_EN(1);
18| & CIM. INT ENGT1] t UART1 EN(1
20 r hi
2]
E-Output L

[ 1

CIU (Build) * | CIU (Build, Run) % | CIU (Run) X
P [core @
=] cause before 7fb79fB86ac8

int sum@ 400600600

int_en@ 400000000

int_sumd4 400000000

int_end4 0 0

cause after 7fb79fBB66cE

Core 1

cause before 7fb79f886770

int sum@ 40800060

int_en0 O

int sum4 400000000

int_end4 0 0

cause after 7fb79fBB6370

Figure 7. Output of CIU. No pending interrupt on core 1.

are configured so three bits would be cleared i.e. xxxxxxxx6770 changes to
XxXxXXXXXx6370.

In figure 8, uart0 has no interrupt and uartl is receiving an interrupt with
id 6. For core@, bit 9 and 10 of enable register is set and cause register
is get initialized with garbage value. As summary register shows the
presence of an interrupt and bit 35 is set, it means that uartl interrupt is
present. Its enable register should also be set for uartl, in order to pass
on the pending interrupt. Hence, bit 9 11 will be cleared and bit 10 will be
set for core @ i.e. xxxxxxxxdac8 changes to xxxxxxxxcac8 in the output. For
corel, nothing 1is enabled so all three bits would be cleared 1i.e.
xxxxxxxxd770 changes to xxxxxxxxc370.

4.2.5. Output on Hypervisor Console

During execution, hypervisor makes a call to the code written for console
I/0. On console attachment, the binaries, executing within hypervisor, can
start printing on the hypervisor console. To validate virtual execution of
binaries, hypervisor console output (e.g. shown in Figure 9) was compared
with that of real host system console.
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] main.cpp *
1l
_g‘ Source  History B E- 8- 8 % S | F © B | &€ 9
13 uint64 t mio wart@ iir=1l, mio uartl iir=6;
0| 14 uint64_t cause[12];
o [ CIU ciu;
z | 16 int 1ide= @, iid1=0;;
| 17
18 ciu.INT ENG[@] .set UARTG_EN(1);
19 ciu.INT ENG[1] .set UART1 EN(1);
20 while(1){
21
22 for (int i=0;i<24;i=1+2){
73 colltee"Cnrn Meel int 1 (1 /2) e nt -
IE- Output x|

[ |
CIU (Build) * | CIU (Build, Run) % | CIU (Run) %
P core 0
5 |cause before 7f2b5b78dac8
int_sum@ 80EEEEEEE
int_en@ 400000000
int_sum4 80GEOEEEEE
int_end4 0 0
cause after 7f2Zb5Sb7BcacB
Core 1
cause before 7fZb5Sb78d770
int_sum@ BOEEEEEEE
int_en@ O
int_sum4 80CEEEEGE
int_end4 0 @
cause after 7fZb5b78c370

Figure 8. Output of CIU. No pending interrupt on core 0.

root@octeon:/home/Asad data/hypervisor2-clone# ./dist/Debug/GNU-Linux-x86/hypervisor2-clone

Kk kA kA hk kA hkAkhkkhkhhkkk Kk Main () :Start Here Khkkhkkhkhkhkhkhkhhkhkk Ak khkkhkhkkx kK

Loaded binary address...: 0x000000004b883000

REGION_ADDR...: 0x000000002ba4c000 REGION SIZE 0x80
REGION_ADDR...: 0x000000002ba4d000 REGION SIZE 0x200
REGION_ADDR...: 0x000000004bc83000 REGION SIZE 0x10000000
REGION_ADDR...: 0x000000005bc83000 REGION SIZE 0x80000
REGION_ADDR...: 0x000000005bd03000 REGION SIZE 0x80000

U-Boot 1.1.1 (Development build, svnversion:

BIST check passed.

Warning: Board descriptor tuple not found in eeprom,

EBH5610 board revision major:1, minor:Q0,
OCTEON CN56XX-NSP pass 2.0,
DRAM: 1024 MB

Clearing DRAM........

Flash boot bus region not enabled,

Core clock: 0 MHz,

done

u-boot:exported,

serial #:
DDR clock:

exec:exported) (Bu

using defaults
unknown

0 MHz (0 Mhz data rate

skipping NOR flash config

Figure 9: Output on hypervisor console.




5.Impact on Project Progress

The project is on track and making good progress. During development, we
occasionally find dependences between the milestones that 1leads to the
partial development of some future milestones, in addition to the current
milestones. This thing has no adverse impact on project progress but
advantageous in true sense.
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