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This document reports on the implementation 
challenges faced during 1st deliverable of 
“Development of Type 2 Hypervisor for MIPS64 based 
Systems” project, funded by National ICT R & D Fund 
Pakistan. This report starts with brief description 
of project objectives, technical details of our 
approach, challenges and their solutions. Complete 
description of testing infrastructure, test cases 
and test results are discussed later on. The report 
concludes with the impact of 1st deliverable on the 
overall project progress.  
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1. Project Description 
 

The main objective of this project is to develop an open source Type 2 

hypervisor, for Linux-based MIPS64 embedded devices. Type-2 means that it is 

a hosted hypervisor which runs on MIPS64 based Linux systems as a Linux 

process. It is intended that the hypervisor will (1) support installation and 

execution of un-modified MIPS64 Linux guest(s) on un-modified MIPS64 Linux 

host (2) take advantage of virtualization for improved hardware utilization 

and performance optimization, by using multiple MIPS cores. Our focus on MIPS 

is due to the fact that MIPS based systems are lagging behind in the use of 

virtualization.  One of the reasons is that many MIPS based processors are 

used in low end consumer devices like TV set top box, GPS navigation system 

and printers.  There isn’t a clear cut use case for virtualization here.  But 

few of the MIPS vendors target higher end embedded devices like network 

switches and routers, GSM/LTE base station equipment and MIPS based blade 

servers. There are clear-cut virtualization use cases for this higher-end 

MIPS segment.  

The hypervisor is named "hypervisor2", where “2” stands for type 2. The 

development started on April 1, 2013 and first deliverable is due after 3.5 

months i.e. July 15, 2013. In first deliverable, we need to build the 

required infrastructure. The infrastructure should print guest kernel banner 

on console, at the end of 1st deliverable. 

2. Development Strategy  

We are following a hybrid approach to develop hypervisor2. Executable binary 

is loaded in the address space of hypervisor2 and mapped to a known memory 

address. Traditional trap-and-emulate technique is used to take control of 

each instruction. Hybrid approach works as following: 

1. If the instruction is privileged, it is emulated. 

2. If the instruction manipulates sp, gp and/or k0 registers, it is 

dynamically patched before execution. 

3. Otherwise, the instruction is executed directly on hardware as it is.  

3.1. Challenges and Solutions 

Development of a hypervisor is quite challenging. Runtime systems like 

hypervisor are typically sensitive to runtime overhead. Runtime overheads, 

like that of emulation, result in significant performance degradation if not 

taken care of. To reduce runtime overhead, our initial strategy was to 

emulate privileged instructions only and execute rest of the instructions on 



bare metal (hardware). On execution of privileged instruction in user mode, a 

trap is generated (i.e. SIGILL signal is raised). We implemented a signal 

handler that catches signal, fetch/decode the instruction and emulate its 

behavior. 

 

Challenge 1 

Standard C library (i.e. glibc) does not allow modification of sp ($29) and 

gp ($28) registers in user mode. Non-privileged instructions dealing with 

these registers can't be executed directly on hardware. Similarly, K0 ($26) 

and K1 ($27) registers produce unexpected results because they are interrupt 

handling registers used by kernel and potentially not used by user programs.  

 

Solution 1 

In addition to emulation of privileged instructions, we implemented the code 

for emulation of non-privileged instructions involving gp and sp register.  

 

Challenge 2 

The next challenge was that any instruction can potentially manipulate gp and 

sp registers and we may end up in emulating all instructions, resulting in 

poor performance. 

 

Solution 2 

We implemented code for dynamic code patching and patched all instructions 

involving sp($29), gp($28) and k1($27) registers. Patched instructions were 

harmlessly executed on hardware and contents of corresponding registers were 

updated later (in a trap handler).  

 

Challenge 3 

To ensure correct execution of guest code, we need to use debugger 

extensively during development. With the increasing number of executed 

instructions, debugging information becomes complex and hard to read.  In 

case of an error condition, we need to determine the instruction that 

produced error. Searching the error-causing instruction between two states of 

emulator is not a trivial task. 

 

Solution 2 

In this stage, we generate trap on every instruction so that debugging and 

testing could be made easier. Now, the guest code is executed using a hybrid 

approach: privileged instructions are emulated, instructions involving sp, 

gp, k0 registers are patched and the rest are allowed to execute on hardware 

unchanged.  



4. Testing Infrastructure 

Testing infrastructure involves MIPS64 evaluation board with multicore Octeon 

processor, hardware debugger (JTAG), development system and testing routines. 

We need rigorous testing to make sure that guest kernels run in complete 

isolation from each other and from host kernel. Similarly, on each 

instruction execution in virtualized environment, changes to system state 

should imitate the changes made by executing the same in real environment.  

4.1. Test Cases 
 

Hypervisor manipulates (i.e. emulation/code patching) guest code to use 

privileged hardware resources controlled by host kernel. Hence, various test 

cases are needed to make sure the consistency and integrity of guest code. 

During first deliverable, our focus is on four types of test cases.  

4.1.1. Matching system states 
 

In our case, system state consists of the values of general purpose registers 

and some of coprocessor 0 (CP0) registers at a particular instance. In order 

to verify the correct working of hypervisor, we run (same) executable binary 

directly on Cavium MIPS64 board and through hypervisor. We get real system 

state on each privileged instruction by using JTAG and compare both outputs 

(hypervisor and JTAG) for verification. JTAG provides the facility of setting 

hardware breakpoints at each privileged instruction to stop and take log of 

system state. Without setting breakpoints, it logs the state at every 

instruction execution. 

4.1.2. Execution path 
 

Due to emulation and code patching, guest code execution path may differ from 

that of the same binary running directly on board. Taking Log at breakpoints 

may fail due to unavailability of a priori information about execution path 

of guest code. For example, if guest code sway from the path containing some 

breakpoint, we would not be able to take system state at that breakpoint and 

state matching test result will be misleading. 

 

Logging system state after each instruction execution could help in avoiding 

the situation of taking wrong execution path. This allows us to debug the 

potential causes of error (if any) by looking at system state before and 

after the execution of malfunctioning instruction. However, there is inherent 

overhead of logging state at each instruction execution. There were about 

339351 instructions executed by u-boot. JTAG created a file of about 6MB in 



approximately 7 hours. Generated file contains data (i.e. general purpose 

registers + CP0 registers content) of about 2600 states. To reduce state 

logging time, we decided to use a small binary (i.e. code for irrelevant 

external devices is commented out) and take log on Quick Emulator (QEMU). To 

take log on QEMU, we used the expertise of another HPCNL team working on a 

different project titled “System Mode Emulation in QEMU”.  

4.1.3. Comparing Console Output 
 

On reaching the stage where console is get attached with our hypervisor, the 

binaries, executing within hypervisor, starts emitting messages on console. 

It serves as another way of validation, whereby output of our hypervisor is 

compared with that of real MIPS system. 

4.1.4. Progress 
The progress is tracked by identifying labeled blocks, in binary code. The 

blocks are identified by following the control flow of binary. When the 

instructions in one block are executed, its label is noted and control is 

conditionally/unconditionally transferred to the next block in control flow. 

This way we measure the progress that how many block have been executed and 

how many left.  

 

Emulation and code patching may lead to infinite loops in the code. For 

example, if emulation/patching changes system state in such a way that 

control is transferred to one of prior blocks of the current block, the 

hypervisor will enter into an infinite loop. We need to avoid the situations 

like this in order to make progress.  

 

4.2. Test Results 
 

The sample output of system state test, hypervisor console, and execution 

path test is elaborated in this section. 

 

4.2.1. Output of System State Matching Test 
 

We trap at every instruction and create a state-file. We match this state 

file with qemu log state-file to see if any register contains different 

contents. Mismatches are written in other file as shown in figure 1. 



 
Figure 1: Output of system state matching test. 

  

4.2.2. Output of Execution Path Test 
 

We face difficulties in debugging if QEMU log is missing instruction log at 

different points. To ensure that the hypervisor is on the right track we 

match the Program Counter (PC) values taken by hypervisor and all the PC 

values taken in qemu log, as shown in figure 2. 



 
Figure 2: Output of Execution Path Test. 

 

4.2.3. Output on Hypervisor Console 
 

During execution, hypervisor makes a call to the code written for console 

I/O. On console attachment, the binaries, executing within hypervisor, can 

start printing on the hypervisor console. To validate virtual execution of 

binaries, hypervisor console output (shown in Figure 3) was compared with that 

of real host system console.   

5. Impact on Project Progress 
 

Although development constraints forced us to change the order of couple of 

milestones, we are not expecting any impact on overall progress of project. 

Our progress is quite satisfactory and according to the expectations.  



 

 

 

 

~*~*~*~ 

root@octeon:/home/Asad_data/hypervisor2-clone# ./dist/Debug/GNU-Linux-x86/hypervisor2-clone 

 

        *********************   Main():Start Here  ************************* 

        Loaded binary address...: 0x000000004b883000 

REGION_ADDR...: 0x000000002ba4c000 REGION_SIZE = 0x80 

REGION_ADDR...: 0x000000002ba4d000 REGION_SIZE = 0x200 

REGION_ADDR...: 0x000000004bc83000 REGION_SIZE = 0x10000000 

REGION_ADDR...: 0x000000005bc83000 REGION_SIZE = 0x80000 

REGION_ADDR...: 0x000000005bd03000 REGION_SIZE = 0x80000 

   : 

   : 

U-Boot 1.1.1 (Development build, svnversion: u-boot:exported, exec:exported) (Bu 

 

BIST check passed. 

Warning: Board descriptor tuple not found in eeprom, using defaults 

EBH5610 board revision major:1, minor:0, serial #: unknown 

OCTEON CN56XX-NSP pass 2.0, Core clock: 0 MHz, DDR clock: 0 MHz (0 Mhz data rate 

DRAM:  1024 MB 

Clearing DRAM........ done 

Flash boot bus region not enabled, skipping NOR flash config 

   : 

   : 

Figure 3: Output on hypervisor console. 


