

Final Project Report of

Type-2 Hypervisor for

MIPS64 Based Systems

This document is the final project report of “Development of Type-2

Hypervisor for MIPS64 Based Systems” project, funded by National ICT

R&D Fund Pakistan. The report starts with the introduction of overall

project. Then it describes the infrastructure of hypervisor and details of

different basic units. The report ends with the performance comparison of

hypervisor as compared to bare-metal.

December

2015

High Performance Computing and Networking

Laboratory HPCNL

Al-Khwarizmi Institute of Computer Science,

University of Engineering and Technology Lahore

Pakistan

Contents
1. Introduction of Project .. 1

2. Type-2 Hypervisor for MIPS64 .. 2

3. Basic Design Infrastructure ... 3

3.1 Execution-Flow of Type-2 Hypervisor ... 4

4. System Modules .. 5

4.1 Multi-Core Processor Virtualization ... 5

4.2 ISA Virtualization (using Dynamic Binary Translation) .. 9

4.2.1 Privileged Instructions .. 9

4.2.2 Unprivileged Instructions .. 10

4.2.3 Cavium Specific Instructions .. 13

4.2.4 Branch and Jump Instructions ... 13

4.2.5 Control Shifting Instructions ... 16

4.2.6 Special Instructions ... 16

4.3 Memory Management Unit ... 16

4.3.1 GVA to GPA Translation... 17

4.3.2 GPA to HVA Translation... 18

4.3.3 Page Table .. 18

4.3.4 Translation Look-aside Buffer (TLB) .. 18

4.3.5 Cavium Segment Implementation.. 18

4.4 Timer Unit ... 19

4.5 Interrupt and Exception Handling ... 20

4.5.1 SIGFPE: Floating point exception handling .. 21

4.5.2 SYSCALL: System call handling .. 22

4.5.3 TLB and Address error Exception Handling ... 22

4.5.4 External Interrupts ... 22

4.6 I/O Devices ... 22

4.6.1 UART ... 23

4.6.2 Central Interrupt Unit (CIU) .. 24

4.7 Virtual Disk ... 26

4.7.1 Virtio Block Configuration .. 26

4.7.2 Vhost Block Configuration .. 28

4.7.3 Creation of Virtual Disk for Hypervisor .. 28

4.8 Networking ... 30

4.8.1 Virtio-Net ... 31

4.8.2 Vhost-Net ... 32

4.8.3 Network device in hypervisor .. 33

4.8.4 Execution flow of networking ... 33

5. Performance Evaluation .. 35

5.1 Booting Time .. 35

5.2 lmbench ... 36

5.3 STREAM .. 39

5.4 Linux Testing Project (LTP) ... 39

Figures

Figure 1: Overview of Type-2 Hypervisor as a user Process ….. 2

Figure 2: Multithreaded Design of Type-2 Hypervisor …………………………………………. 3

Figure 3: Basic Execution Cycle of Processor …………………………………………………... 4

Figure 4: Execution Flow of Processor ………………………………………………………….. 6

Figure 5: Multithreaded view of hypervisor and External Devices …………………………....... 7

Figure 6: Execution Flow of Hypervisor with SMP …………………………………………..… 8

Figure 7: Memory Mapping of MIPS system ………………………………………………….. 16

Figure 8: Address Translation of Hypervisor ………………………………………………….. 17

Figure 9: Timer infrastructure ………………………………………………………………...... 19

Figure 10: Exception Handling in User mode …………………………………………………. 21

Figure 11: CIU Interrupt Distribution from External Devices to Core ………………………… 25

Figure 12: Memory Mapping between core and External Device …………………………...… 25

Figure 13: Code Snippet from virtio_blk.c …………………………………………………… 27

Figure 14: Commands for Device Creation ….………………………………………………. 27

Figure 15: Networking Infrastructure of Type-2 Hypervisor ………………………………….. 30

Figure 16: Communication between Virtio-Net, Vhost-Net and Network Device ……………. 34

Figure 17: Comparison of Booting Time ………………………………………………………. 35

Figure 18: STREAM Results for Hypervisor and Native System ……………………….…….. 39

Figure 19: Latencies for Stream Operations ………………………………………..…………. 40

Tables

Table 1: Lmbench Output for Different Memory Operations .. 36

Table 2: Lmbench Bandwidth Results for File mmap .. 37

Table 3: Lmbench Latency Results for File mmap ... 37

Table 4: Lmbench Bandwidth Results for File Reading ... 37

Table 5: Lmbench Latency Results for File Reading ... 38

Table 6: Lmbench Bandwidth Results for pipe and unix ... 38

Table 7: Lmbench Results of Network Through-put .. 38

1

1. Introduction of Project

Virtualization has rapidly became the foundation of concepts like cloud computation and big

data centers. It has found applications in various areas like include server consolidation,

convenient software development and testing, dynamic load balancing and disaster recovery.

Embedded virtualization is a recent phenomenon being in its early stages as compared to sever

and PC virtualization. It holds huge potential and offers challenging and interesting prospects for

research and development given the size and diversity of the embedded markets from general

consumer devices to high-end enterprise networking solutions. Virtualization is gaining ground

in the embedded domain with ARM announcing to incorporate the hardware level support for

virtualization in its processors. MIPS community will most likely follow the suit as a substantial

portion of the embedded market uses MIPS processor architecture.

This project was not only research effort for exploring virtualization techniques in MIPS64

based systems but also can be developed into industrial project e.g. MIPS based high end

networking and communication devices can take the advantages of virtualization for isolation,

security and optimal hardware utilization purposes. The possible benefits for exploring

virtualization include:

a) Providing strict isolation and security between virtual machines (e.g. segregating routing

information system and forwarding tables into two virtual machines inside a router so

that any malfunctioning of one doesn’t bring the other down.)

b) Running older versions of Linux OS and the user-land programs on a new hardware

c) Running different versions of software stack concurrently without any interference with

each other

d) Server consolidation by shifting loads from multiple under-utilized systems to one system

such that each virtual machine is virtually equivalent to one under-utilized system.

This hypervisor targets MIPS64 based multi-core embedded systems. MIPS processors have

wide spread use in embedded devices and MIPS Technologies is the world's second largest

processor IP company, providing the leading processor architecture for embedded systems. Its

industry-standard architectures and cores power some of the world's most popular products for

2

the home entertainment, communications, networking and portable multimedia markets. The

main objective of this project was development of an open source Type-2 hypervisor, for Linux-

based MIPS64 embedded devices. This project was a successful step towards researching and

enabling virtualization in MIPS based embedded systems.

2. Type-2 Hypervisor for MIPS64

A hypervisor or virtual machine monitor (VMM) provides a software virtualization environment

in which other software, including operating systems, can run with the assumption of full access

to the underlying system hardware, but in fact such access is under the complete control of the

hypervisor. Multiple VMs may be managed simultaneously by a hypervisor. Hypervisors are

generally classified as Type 1 or Type 2, depending on whether the hypervisor is directly running

in supervisor mode on the physical hardware (Type 1) or is itself hosted by an operating system

(Type 2).

Type-2 means that it is a hosted hypervisor which runs on MIPS64 based Linux systems

as a Linux process. This process provides the virtual hardware representation to the guest

running above it. Virtual hardware consists of software representations of CPU cores, memory,

and peripheral devices. In real hardware,

CPU cores and devices work concurrently.

Fig. 1 shows an overview of Type-II

hypervisor. Similar to other user processes,

it is executing in the user space of Linux

based host OS. Multiple cores can be

initialized. Each core is virtualized through

as a separate thread. Also the external

devices like UART are also implemented as

threads. Networking has also been enabled.

The guest will be running its applications

over the host OS in complete isolation.

Hypervisor doesn’t have any knowledge or Figure 1: Overview of Type-2 Hypervisor as a User

Process

3

control over guest applications. Hypervisor simply translates a block of guest’s instructions into

a block of safer instructions that can be executed in user mode.

3. Basic Design Infrastructure

Type-2 hypervisor behaves like a Linux process that could be scheduled by host operating

system. However, this process has to present a software representation of virtual hardware for

guest operating system(s) to run on it. Virtual hardware consists of software representations of

CPU cores, memory and peripheral devices. In real hardware, CPU cores and devices work

concurrently and are implemented as threads in software representation. Multithreaded design for

hypervisor, as shown in Fig 2. It shows that each core and device is a separate thread. Central

interrupt unit (CIU) is another thread that dispatches pending interrupts to the cores using

mapped memory.

Design of a basic hypervisor requires development of three basic units.

a) ISA Emulation: First and foremost is ISA emulation. For providing virtualization,

hypervisor would be able to translate basic assembly instruction code of guest into

equivalent host’s instruction set.

Figure 2: Multithreaded Design of Type-2 Hypervisor

4

b) Memory Management: what is the view of physical memory to the guest? How the

accessibility is provided for different regions? How the address mapping would be

managed by hypervisor? All these questions are accounted in memory management.

c) External Interrupts and Exceptions: For successful implementation of hypervisor,

interrupts and exceptions play an important role. Routing of guest interrupts and

exceptions are critical in successful working of guest system.

After the successful implementation of core virtual system, external devices play a very

important role in making the virtual system usable in real applications. Implementation of

external devices like network card, UART and disk are very important.

Implementation decision of these three basic units immensely impacts the overall performance of

hypervisor.

3.1 Execution-Flow of Type-2 Hypervisor

After the creation of virtual board, the virtualized processor goes in a simple three step cycle. Fig

3 shows the basic execution cycle of virtual processor.

1. Block Fetching: Basic guest code block is fetched. Block is defined as a consecutive set

of instructions ending with a control shifting instruction. Block is fetched from the

current value of PC register.

2. Instruction Translation: The fetched guest’s assembly instruction block is translated into

a set of unprivileged instructions. Each

instruction is translated into no. of host

assembly instructions. Translation of each

instruction is concatenated to form the

translated block.

3. Block execution: The translated block is

executed directly on hardware. Control may

shift back to hypervisor due to following

reasons:

Figure 3: Basic Execution cycle of Processor

5

a. Address translation for load/store instructions

b. TLB operations

c. System call

d. External interrupt or exception

e. Complete execution of block

The request for particular case is handled and control is shifted back to the last

interrupted instruction. In the case of end of block, the next block is fetched from current

value of PC, translated and executed.

Fig. 4 shows the detailed and complete execution flow of block level dynamic binary

translation. The first block is fetched from the guest virtual reset vector address 0xbfc00000

(Step 1). The fetched block is translated (Step 2,) cached (Step 3) and executed (Step 4 and 5).

When execution of the translated block is completed, the control returns to the hypervisor for

fetching the next block (Step 6, 7 and 8). The presence of next target block is checked in the

cache. The control is simply transferred to block, which has been found into the cache-blocks

(Step 13). If the new block is not found among the cache-blocks, it is fetched (Step 9), translated

and also cached. The cache-blocks may contain some fixed number of translated blocks in it.

When cache is full, one block from the cache-blocks is replaced by the new translated block

randomly. During execution of block if control is transferred to handler for any other request

than new block, Step 10 is taken. If the request in not handled properly, system will terminate

(Step 14). If the request is handled successfully, the execution of the current block is resumed

(Step 12).

4. System Modules

The whole infrastructure of hypervisor is consisted of different modules. Each one is explained

briefly ahead.

4.1 Multi-Core Processor Virtualization

For each processor, a separate thread is created. Each thread provides the virtualization of

a single processor. System can be initialized with multiple cores. All cores will be working in

6

Figure 4: Execution Flow of Processor

7

parallel. The basic three execution steps are followed by each processor, which are described

previously.

 Figure 5 shows the multithreaded view of hypervisor, with cores and CIU as separate

threads. First hypervisor initialize the necessary data structures and objects. Then it loads uboot

binary and dork child threads according to the number of cores initialized and other parallel

units. Initially only Core 0 is running and other cores are is sleep mode. After some booting

process core 0 enables all other cores. This enabling and controlling mechanism is carried out

through CIU (Central Interrupt Unit). The other mechanisms like fetch, translate and execution

of blocks remains the same for all cores. Figure 6 shows the modified flow chart of hypervisor.

Figure 5: Multithreaded view of Hypervisor and external devices

8

Figure 6: Execution Flow of Hypervisor with SMP

9

4.2 ISA Virtualization (using Dynamic Binary Translation)

Dynamic binary translation was used to provide ISA virtualization. Block of guest’s assembly

instructions are translated into host set of instructions which can be executed in user space. The

idea is to not completely emulate the instruction but either change the registers embedded in

instruction or replace it with other assembly instructions which will perform the equivalent

operation and execute it on hardware as it is. The registers that are replaced are first loaded with

the expected contents. These loading instructions are also written in assembly language. The

complete translation of an instruction will have some loading instructions then the actual

reconstructed instruction and then some storing instructions. Control shifting and flow control

instructions are treated differently.

A memory based copy of all registers is present (i.e. GP, CP and special registers) which

belongs to guest OS. After the execution of particular instruction, guest's registers would also be

updated accordingly. For translating mips instructions into equivalent set of instructions which

will produce same results in the registers kept for guest, 3 gp registers were used. The expected

contents (from host’s point of view) of the registers are first loaded in these registers and then

replaced in instruction to be executed. Results are then saved to guest’s memory based registers.

MIPS instructions are mainly categorized as R, I and J types. “R” category contains those

instructions which use on gp registers. I types involves an immediate value plus register and J

type has target address field, no registers to manipulate. The categories are based on the type of

instruction, privileged or unprivileged, how many registers are used, what is destination register

and how the fields are manipulated.

Below are the categories and the instructions included in them are also mentioned.

4.2.1 Privileged Instructions

Instructions which involve Co-processor 0 registers are privileged instructions and can’t be

executed in user mode. Privileged Instructions are treated separately.

mfc0/ mtc0 are implemented to move the contents of Co-processor register to and from gp

registers, using the memory location of registers. tlbr/ tlbwi/ tlbwr/ tlbp are completely handled

in handler written in C/C++ code, assembly instructions just shift the control back to hypervisor

10

when these instructions occur. di/ei are translated into instructions which change bits in status

register to disable and enable interrupts respectively. In “eret” implementation first erl bit of

status register is checked to be set or not. If set then error epc is returned, if not then epc value is

returned. The returned value is assigned as next pc to be executed.

4.2.2 Unprivileged Instructions

Unprivileged Instructions are grouped on the basis of their type and functionality.

 unprev_R

o All those R-type unprivileged instructions, which use 3 gp registers. 2 source gp

register and one destination gp register.

o Includes: baddu, dmul, dpop, pop, or, sllv, dsllv, srlv, dsrlv, rotrv, drotrv, srav,

dsrav, movz, movn, add, dadd, addu, daddu, sub, dsub, subu, dsubu, and, xor, nor,

slt, sltu, mul, wsbh, seb, seh, dsbh, dshd, clz, clo, dclz, dclo, seq, sne (40 total)

o First 2 source registers are loaded from memory into register $12 and $13. The

register in the instruction to be translated is replaced with these registers and

executed as it is. The result is stored on the destination memory based gp register.

 shift_R

o All those R-type unprivileged instructions, which are shift instruction and the no.

of times to be shifted is encoded in instruction itself (i.e field from bit 6 to 10). 1

source gp register and 1 destination gp register.

o Includes: dsrl, srl, dsll, sll, drotr, rotr, dsra, sra, drotr32, dsll32, dsrl32, dsra32 (12

total)

o First source register is loaded from memory into register 12. The register in the

instruction to be translated is replaced with the register and executed as it is. The

result is stored in the destination memory based gp register.

 mulDiv_R

o All those R-type unprivileged instructions, which multiple or divide and the

destination registers are special register HI and LO (opposite to mul instruction

included in uprev_R, whose destination is also a gp register) and 2 source gp

registers.

11

o Includes: dmult, mult, dmult, multu, ddiv, div, ddivu, divu, madd, maddu, msub,

msubu (total 12)

o First source registers are loaded from memory into registers 12 and 13. The

instruction to be translated is replaced with these registers. After the execution of

these instructions the result will be in HI and LO special registers. Mflo and mfhi

is executed after these instructions. The result is stored in the guest's Hi and LO.

For instruction “madd”, HI and LO are registers of the hardware is also updated

first before executing it.

 moveFromLoHi_R

o For moving contents from HI and LO special registers into the gp registers,

contents are loaded from HI and LO and saved at the place of destination gp

register.

o Includes : mflo, mfhi (total 2)

 moveToLoHi_R

o For moving contents to HI and LO special registers from gp registers, contents are

loaded from particular gp register and saved at the place Hi or Lo register.

o Includes: mtlo, mthi (total 2)

 ext_R (extract)

o These are R-type instructions, whose fields are used differently than the previous

categories. Bit 16-20 are used for destination register and bits 11-15 are used for

size. 1 gp source and 1 gp destination register is used.

o Includes: ext, dextm, dextu, dext, exts, exts32 , (total 6)

o Source register is first loaded in register 12. Then instruction to be translated in

executed with 12 and 13 registers. The result in 13 register is stored in the

destination gp register.

 ins_R (insert)

o These are R-type instructions, whose fields are used differently than the previous

categories. Bit 16-20 are used for destination register and bits 11-15 are used for

size. 1 gp source and 1 gp destination register is used. Similar to extract but the

difference is that destination register is also loaded before the execution of

instruction.

12

o Includes: ins, dinsm, dins, dinsu, cins, cins32 (total 6)

o Source and destination registers are loaded in register 12 and 13 respectively.

Then instruction to be translated in executed with 12 and 13 registers. The result

in 13 register is stored in the destination gp register.

 unprev_I

o All those I type instructions which use 1 source and 1 destination register (except

lui which have no source register but the translation would not produce any error

if translated in this category).

o Includes: daddi, daddiu, addiu, slti, sltiu, andi, ori, xori, lui, addi, seqi, snei (12

total)

o Source register is loaded. Instruction to be translated is executed with register 12

and the result is saved in the destination register's place.

 unprev_I_Load

o All I-type load instructions

o Includes: ldl, ldr, lb, lh, lwl, lw, lbu, lhu, lwr, lwu, ll, lld, ld (total 13)

o First the address from where the contents would be loaded is translated in terms of

hypervisor. For that the address which needs to be translated is saved on a

particular location and control is given to the handler. The translated address is

loaded in the register and then the load instruction is executed. The loaded

contents are saved on the destination register.

 unprev_I_Store

o All I-type store instructions

o Includes: sdl, sdr, sb, sh, swl, sw, sh, swr, sw, sc, scd, sd (total 12)

o First the address from where the contents would be stored is translated. For that

the address which needs to be translated is saved on a particular location and

control is given to the handler. The translated address is loaded in the register and

then the store instruction is executed.

 LL and SC

o Load-Linked and Store Conditional are two instructions which are used to

atomically implement read-modify-write using a special LLBit. Assembly

instructions are added to translation for correct implementation.

13

4.2.3 Cavium Specific Instructions

These instructions don’t have the standard R, I or J format. Their format is a bit different along

with a little difference in their operation from standard instructions.

“saa/saad” implementation is different from simple store instruction on the account of fact that it

directly accesses the memory location and adds a value and store the resultant at same memory

location. This operation is done atomically. The difference in translation is due to the different

format of the instruction. Other store instruction has an offset field but this instruction doesn't

have any offset field.

“seqi/snei” instructions checks whether the value of gp register is equal to the 10 bit constant,

specified in the instruction. If equal, then destination register is set otherwise cleared. The

translation is provided accordingly.

“v3mulu” is cavium specific instruction performs 192x64 bit unsigned multiplication. Its

execution involves special purpose registers P0, P1, P2, MPL0, MPL1 and MPL2. As

hypervisor has its own copy of special purpose registers, so before multiplication the contents of

these registers are moved to hardware registers and then execute multiplication.

mtm0, mtm1, mtm2, mtp0, mtp1 and mtp2 instructions moves the contents of gp register to

special purpose register (MPL0, MPL1, MPL2, P0, P1 and P2).

4.2.4 Branch and Jump Instructions

These instructions include all variants of branches and jumps. One of the reasons to categorize

them separately is due to the execution of delay slot. In this case, two instructions are translated

collectively.

 bne_beq (branch if not equal, branch if equal)

o These are only two branch instructions which use two source registers.

o Includes: bne, beq (total 2)

o First the sources registers are loaded into the temp registers and then the delay slot

is executed. Branch's source are first loaded due to the fact that delay slot might

change the contents of the registers involved in branch. For correct execution of

branch its source registers are loaded in temporary registers. Then the actual

14

branch is executed but with different offset because the target address needs

translation. If the branch is taken than offset is added in branch's pc and if not 1 is

added in the branch's pc, then this address is stored on a particular place and the

control is shifted to the handler.

 Branch

o Those branch instructions which use one source register.

o Includes: bltz, blez, bgez, bgtz, bltzal, bgezal, bbit0, bbit032, bbit1, bbit132 (total

10)

o First the source register is loaded and then the delay slot is executed. Branch's

source are first loaded due to the fact that delay slot might change the contents of

the register involved in branch. Then the branch is executed but with different

offset because the target address needs translation. If the branch is taken than

offset is added in branch's pc and if not 1 is added in the branch's pc, then this

address is stored on a particular place and the control is shifted to the handler.

 bne_beq_likely

o Both instructions use two registers but different from the previous bne_beq

category due to the fact that the execution of delay slot is conditional. If the

branch is taken then the delay slot is executed otherwise not.

o Includes: beql, bnel (total 2)

o First the sources registers are loaded into the temp registers and the actual branch

is executed but with different offset because the target address needs translation.

If the branch is taken than delay slot is executed and offset is added in branch's pc

and if not 1 is added in the branch's pc, then this address is stored on a particular

place and the control is shifted to the handler.

 branch_likely

o These instructions use one register but different from the previous branch

category due to the fact that the execution of delay slot is conditional. If the

branch is taken then the delay slot is executed otherwise not.

o Includes: bltzl, blezl, bgezl, bgtzl, bltzall, bgezall (total 6)

o First the source register is loaded into the temp register and the actual branch is

executed but with different offset because the target address needs translation. If

15

the branch is taken than delay slot is executed and offset is added in branch's pc

and if not 1 is added in the branch's pc, then this address is stored on a particular

place and the control is shifted to the handler.

 j (jump)

o It doesn't use any source register. It is an “I” type Instruction.

o Includes: j (total 1)

o First the delay slot is executed then for executing j the target address needs

translation. The address is extracted from instruction encoding and placed at a

particular place. Then control is shifted to handler.

 jr (jump register)

o This instruction uses one source register. It is an R type Instruction.

o Includes: jr (total 1)

o First the delay slot is executed then for executing jr the target address needs

translation. The address is already in the register, it is placed at a particular

location in memory. Then control is shifted to handler.

 jal (jump and link)

o It doesn't use any source register. It is an “I” type Instruction and differs from

previous “j” due to additional linking operation.

o Includes: jal (total 1)

o First the delay slot is executed then for executing jal the target address needs

translation. The address is extracted from instruction encoding and placed at a

particular place. Then the linking address (i.e. pc+8) is stored in register 31 and

control is shifted to handler.

 jalr (jump and link register)

o This instruction uses one source register. It is an R type Instruction and differs

from previous “jr” due to additional linking operation.

o Includes: jalr (total 1)

o First the delay slot is executed then for executing jalr the target address needs

translation. The address is already in the register, it is placed at a particular

location in memory. Then the linking address (i.e. pc+8) is stored in register 31

and control is shifted to handler.

16

4.2.5 Control Shifting Instructions

 These instructions break the normal execution path and shift the control to exception

handler. Executing these instructions as it is on hardware will shift the control to host's exception

handler and not of the guest's. During translation, this type of instruction is replaced with the

instructions, which will shift control to the hypervisor along with a control mark. Hypervisor will

perform exception handling accordingly to control mark value.

 Trap Instructions: Trap instructions in a system shift the control to exception handler if

the condition is true. This instruction can't be executed as it is on the hardware because if

true then the control will shift to host's exception handler. So, the condition is checked

before and if true then the control is shifted to handler, otherwise next instruction.

 Syscall: In place of syscall, the control is transferred back to the hypervisor with a

specific control mark. Hypervisor service the exception accordingly.

 Break: In place of break, the control is transferred back to the hypervisor with a specific

control mark. Hypervisor service the exception accordingly.

4.2.6 Special Instructions

 rdhwr: This is a special instruction which allows reading of some hardware registers

while in user mode. Due to current translation, only zero is read into the destination

register when this instruction is executed. In case of

SMP, it is used to get core number.

 Pref, deret, cache and ssnop: These instructions are

replaced with “nop”.

 Wait: IP (interrupt pending) bits of “cause” register are

monitored continuously. If anyone of them is set,

indicating the presence of external interrupt, control is

shifted back to hypervisor for interrupt handling.

4.3 Memory Management Unit

It is the most important unit of a computer system. The

memory of typical MIPS system has different regions as

shown by Fig 7. Every region differs on the basis of

Virtual
memory map
Mapped kernel segment

(kseg 2)

Unmapped uncached
kernel segment (kseg1)

Unmapped cached
kernel segment (kseg0)

User space (kuseg)

Figure 7: Memory mapping of

MIPS system

17

accessibility and mapping. The purpose of memory

management unit is to translate virtual addresses to physical

addresses. For virtual address translation, some rules are

already defined by physical hardware and these rules were

implemented in software to provide the virtualization of MMU

used by guest operating system(s). In case of hypervisor, it is

used to translate GVA to HVA. To translate GVA to GPA,

same method as used by the hardware was followed. For

translation of GPA to HVA, hash map is used to store

information of all regions mapped in host virtual address space.

4.3.1 GVA to GPA Translation

MIPS64 architecture supports both 32-bit and 64-bit Addressing modes. In 32-bit addressing

mode, address segment is defined by upper 3 bits (i.e. bits 32-29) of virtual address. If these bits

are 100 then it is kseg0 region. It is directly mapped to physical memory. If these bits are 101,

address is from kseg1 region and this is also directly mapped to physical memory. In both

previous cases, lower 20 bits represent physical address. For 110, region is ksseg. This is not

directly mapped and TLB is searched for address translation. For 111, region is kseg3 which is

not directly mapped and TLB is searched for valid entry to translate the address. If these bits are

0xx then it is useg. Translation for useg is slightly different. If ERL bit of status register of CP0

is set then useg is directly mapped to physical memory. If ERL bit is not set then TLB is checked

to get physical address.

In 64-bit addressing mode, address segment is defined by upper 2 bits (i.e. bits 63-62) of

virtual address. If these bits are 10, then this is xkphys region which is directly mapped to

physical memory or I/O devices. If 49th bit of virtual address is 0 then it is memory access and

lower 29 bits represent physical address of memory. If 49th bit is 1 then it is I/0 address and data

is load/store from respective device. If these bits are 11 then it is xkseg region which isn't

directly mapped and TLB is searched for valid address translation. For 01, region is xsseg which

is also to be searched in TLB for translation. For 00, region is xuseg. If ERL bit of status register

of CP0 is set then it is directly mapped otherwise TLB translation would be required.

Guest virtual address
(GVA)

Guest Physical Address
(GPA)

Host Virtual Address
(HVA)

Hypervisor Load/store
from HVA

Figure 8: Address Translation of

Hypervisor

18

4.3.2 GPA to HVA Translation

All physical memory regions of a machine are mapped in virtual address space of hypervisor.

Once guest’s GVA (Guest virtual address) is translated into valid GPA (Guest Physical Address)

that physical address is identified as memory region or I/O device. According to the region it is

translated to HVA (Host Virtual Address) using hash map. Once a valid GVA-to-HVA

translation is done, the instruction involving the address can be executed with this translated

address.

4.3.3 Page Table

In MIPS no physical page table is provided by hardware and page table is solely managed by

operating system. Hence, there is no need to implement page table.

4.3.4 Translation Look-aside Buffer (TLB)

TLB is a cache used to speedup virtual address to physical address translation. In case of type 2

hypervisor, TLB translates GVA to HVA. There are four basic TLB functions: probe, read,

write-random and write-index. TLB probe searches for a TLB entry using the value of EntryHi

register of co-processor 0 (CP0). If valid entry is found, it places index of TLB entry in CP0

index register, otherwise it sets probe bit of index register and consult page table. TLB read gets

value from CP0 index register and checks the validity of data at this index. If data is valid, the

components of entry (i.e. entryHi, entryLo0, entryLo1 and page-mask) are moved to

corresponding CP0 registers. Otherwise TLB read raises invalid data exception. TLB write-

random gets index of TLB entry from CP0 random register and checks the validity of data at the

index. If entry is dirty, it raises dirty data exception, otherwise it writes corresponding values of

CP0 registers (i.e. entryHi, entryLo0, entryLo1 and page-mask) to the TLB entry at that index.

TLB write-index works same as TLB write-random except that it gets index value from CP0

Index register.

On TLB miss or TLB Mod exception, hypervisor jumps to the exception handler entry

point from where the kernel determine which kind of exception it is and service the exception.

4.3.5 Cavium Segment Implementation

CVMSEG is cavium specific memory segment. CVMSEG resides in KSEG3 region and all

memory reference in address range 0xFFFFFFFFFFFF8000 - 0xFFFFFFFFFFFFBFFF are

19

treated specially by MIPS core. Access to this segment is controlled by setting

CvmMemCtl[CVMSEGENA*] flags and size of this segment is controlled by

CvmMemCtl[LMEMSZ] field. CVMSEG has two portions

1- CVMSEG LM = 0xFFFFFFFFFFFF8000 - 0xFFFFFFFFFFFF9FFF

2- CVMSEG IO = 0xFFFFFFFFFFFFA000 - 0xFFFFFFFFFFFFBFFF

CVMSEG LM is a segment that access portion of DCache as local memory. Larger the

size of this segment, smaller the size of DCache. CVMSEG IO has only one legal address

0xFFFFFFFFFFFFA200 and store to this address issues IOBDMA command which returns data

from IO bus to CVMSEG. Operating system normally uses this region as scratch pad memory

and register values are stored at these locations during context switching. Implementation of this

region was crucial for successful booting.

4.4 Timer Unit

On actual hardware, Operating system keeps track of time by receiving a timer tick after a

configured time. This timer interrupt gives the timing framework to the OS above it. In current

implementation the host time is directly given to guest by reading host time and setting the

guest’s registers. When the guest needs to get

time or register a timer, it read/write the count,

compare and CVMcount registers. Fig 9 shows

the timer infrastructure is works serially in each

processors and only “on demand”.

Whenever the guest needs to get time

from hardware it reads the count or CVMcount

register. Hypervisor intercept this read and read

the host’s time in nanosecond resolution and

update guest’s count and CVMcount registers.

When guest wants to register timer with the

hardware, it writes on the compare register. The

write operation is also intercepted by hypervisor
Figure 9: Timer infrastructure

20

and it registers a timer with the host. The duration of registered timer is kernel’s desired value

multiplied by a multiplying factor. This multiplying factor was needed to reduce the increased

timer interrupts. Otherwise kernel get stuck in servicing the timer interrupts and actual code is

not given time to be executed. After the implementation of this strategy, the prompt is showing

less latency when the command is entered.

4.5 Interrupt and Exception Handling

Exceptions cause change in normal execution flow and control is transferred to some exception

handling routines (if implemented), or crash the application otherwise. During block execution

by hypervisor, two possible exceptions could occur:

a) An instruction like trap or syscall, itself shifts control to an exception routine. Exceptions

like these are called programmed exceptions.

b) An exception like overflow, address error and tlb related exceptions are generated during

the execution of instruction. This type of exceptions is unpredictable because they are not

programmed.

In case of programmed exceptions, exception-causing instructions are replaced with

innocuous instructions that explicitly transfer control back to a hypervisor’s provided handler.

The handler could identify actual (exception-causing) instruction from control mask and handle

it accordingly. In second case, a signal is raised that is caught to handle the exception. Once the

control is available in hypervisor, exception handling routine could be called to do the rest.

In current implementations, Perform_Exception() is called to set various exception

related registers. Exception code is set in cause register. EI, EXL and/or ERL bits of status

register are set to indicate the presence of an exception. EPC register is set with the program

counter (pc) of exception-causing instruction. According to the exception type, exception entry

point is assigned to current pc so that new block could be fetched from there. When the

exception routine is completely executed, eret instruction is called. eret is privileged instruction

and cannot be executed on hardware as it is (from user mode). To emulate it, the status register is

checked and then accordingly set pc back to the address from where exception has actually

occurred. Figure 10 shows the overall.

21

Entry point for all exceptions is generic except for tlb. For example, invalid tlb entry

encountered while executing load/store instruction lead to tlb refill exception. The entry point for

tlb refill exception is different from that of others. In case of nested exception (e.g. exception

raised in an exception routine), general exception entry point is used and corresponding

instruction pc is placed in EPC register.

Figure 10: Exception handling in user mode

4.5.1 SIGFPE: Floating point exception handling

This exception is thrown if the result of an operation is invalid or cause divide-by-zero,

underflow or overflow. On production of such results during guest code execution, underlying

hardware generates SIGFPE signal. Hypervisor provide a handler to catch this signal. When

control comes to this handler, hypervisor redirect it to the exception routine of guest operating

system. After executing exception routine, control comes back to the handler form where it is

jumped back to the immediate next instruction of exception-causing instruction.

22

4.5.2 SYSCALL: System call handling

The system call is the fundamental interface between user mode programs and Linux kernel.

syscall() is a small library function that invokes the system call whose assembly language

interface has specified number and type of arguments. Whenever the syscall instruction occur in

guest code, control is transferred to hypervisor code and then redirected to corresponding

exception handling routine of guest operating system. The remaining mechanism remains same

as above.

4.5.3 TLB and Address error Exception Handling

When the load/store instruction has to be performed in hypervisor first the address on which the

load or store has to be performed, is translated into hypervisor address. During this translation,

privileges are checked, whether this address is allowed to be accessed or not. If not then address

error exception is generated and the next block fetched would be from the exception entry point.

But if an address which is not violating any privileges, then the contents are looked up in TLB. If

the invalid bit or dirty bit is set or no entry is present in the TLB then corresponding exception

Mod, TLBL or TLBS is generated.

4.5.4 External Interrupts

Interrupts are caused by external devices in order to rather communicate or in response to a

request. Timer unit creates continuous interrupts in a running system for providing timing

information. UART also communicate with the cores through generating interrupt.

When an interrupt occurs it set the “pendingInterrupt” variable, which indicates that

external interrupt is present. Before fetching the next block, it is checked whether there is any

pending interrupts or not. If they are present then some particular bits of status are checked to

determine this interrupt should be passed or not. The exception code set for the interrupt is zero

and routed to general exception entry point. It is the responsibility of the kernel handler to figure

out what kind of interrupt has occurred and dispatch it to proper handler.

4.6 I/O Devices

In hypervisor, each core and IO device is emulated in separate thread. When a core has to

communicate with any device it either reads or writes IO device register. Corresponding IO

23

device is notified and device updates its flags according to the operation. Implementing each

device in a separate thread enables maximum parallelization.

 To notify IO device thread, a separate class is defined named DeviceMessageBox. It

contains address which is being accessed, data which is being written to the register at specified

address and whether it is read/write operation. Some posix variables are also part of

DeviceMessageBox which are required for thread communication.

At time being, only two IO devices are implemented

1. UART (Universal Asynchronous Receiver Transmitter)

2. CIU (Central Interrupt Unit)

4.6.1 UART

The UART is typically used for serial communication with a peripheral, modem (data carrier

equipment, DCE), or data set. Either a core or a remote host can use the UART. The cores

transfer bytes to and receive characters from the UART core via 64-bit CSR accesses. The

UART core transfers and receives the characters serially. Either polling (during booting/ in

kernel mode) or interrupts (after booting/ in user space) can be used to transfer the bytes.

Processor communicates with console and keyboard using UART device. So, its implementation

was inevitable for a complete booting system.

Implementation of UART: There are basically two functions of UART. Transmit data provided

by the processor and receive data from input devices. For both these functionalities, hypervisor

have separate threads called Receiver Thread and Transmitter thread.

 Receiver Thread: The purpose of receiver thread is to handover data to processor which

the user input using keyboard. This thread continuously checks for availability of input

from keyboard. Whenever input is available, it sets “Data Available” flag in LSR and

generates an interrupt. When processor reads received data, “Data Available” flag is

cleared from LSR.

 Transmitter Thread: The purpose of transmitter thread is to transmit data which is

being provided by the processor. Transmitter thread helps the processor in printing all the

messages on the console. After transmitting data, it sets “THR is empty” flag in status

24

register and generates an interrupt to tell processor that UART is free now for further

transmission.

 Interrupt Generation: When UART performs an operation, it checks it IER. If interrupt

for corresponding action is enabled, it sets appropriate flags in IIR and notifies the CIU

thread about interrupt generation. CIU reads enable registers of all the cores to check if

any core wants to receive UART interrupt. If it finds the core with enabled UART

interrupt, it sets summary register for that core and generates interrupt. Core jump to its

interrupt routine and service the interrupt.

4.6.2 Central Interrupt Unit (CIU)

CIU is a Cavium specific unit and is responsible for dispatching interrupt requests (coming) from

external devices to a particular core. CIU is discussed here in context of our test bed i.e. Cavium

Networks OCTEON Plus CN57XX evaluation board. Interaction of CIU, external devices and

cores is shown in Figure 11. CIU reads memory mapped registers of the external devices to

know about pending interrupt requests and sets corresponding bits of cause register of target

core, whereas interrupt identification/handling is done in software.

A simplest abstraction of CIU has been implemented. It has been integrated in a copy of

main hypervisor code and works as a separate thread. CIU is only reading CP0's cause register.

As UART is not fully developed yet, UART's memory mapped registers are artificial (for the

time being). UART writing and other devices would be implemented in future. CIU itself has set

of summary and enable registers for every core. An interrupt request goes to only those cores

that had enabled the interrupt by configuring its enable register. In current code, CIU reads

UART's Interrupt Identification Register (IIR), extracts identity bits and set/clear the

corresponding summary registers bits. These summary registers for every core are than “AND”

with their enable registers to set or clear cause register's bit 10, 11 and 12.

In integrated code, shared memory regions are defined for CIU to work with other

components of virtual board. Figure 12 shows these shared memory regions for core0, CIU and a

single device i.e. UART. Region overlapping and dotted lines represent the accessibility and

access mode of registers, respectively. For example, CP0 Cause register belongs to core0, CIU

can access it but UART cannot. As Cause register belongs to core0, it can be read-written by

core0 but it is read-only for CIU. IIR register of UART is read-only for CIU and Core0, hence it

25

is at the intersection of three regions and have dotted boundary. CIU's summary registers are

read-only for core0, hence dotted and at the intersection of two regions. As CIU's enable register

is readable and writeable for core0 and CIU, it has solid boundary and lies in overlapped region.

Figure 11: CIU interrupt distribution from external devices to core

Figure 12: Memory mapping between core and external device

26

4.7 Virtual Disk

A virtual disk (also known as a virtual drive or a RAM drive) is a file that represents as a

physical disk drive to a guest operating system. The main idea of providing disk to guest was to

create persistence of data across boot. The guest should be able to create and store files on the

drive.

Virtio and Vhost can be configured for block devices such as Disk. Virtio para-virtualized

driver for emulation of disk was used. Virtio driver directly interacts with Vhost client in host

kernel and hypervisor only works on control path i.e. notifying host kernel when data is provided

by guest or sending interrupt to guest when vhost completes its assigned task. Due to some

limitations, Virtio_Blk or Vhost_Blk cannot be used directly for this purpose and some changes

have to be made.

4.7.1 Virtio Block Configuration

In guest kernel, virtio block is already present and can be enabled from “menuconfig” of

kernel. But virtio devices are implemented as PCI devices in kernel. As PCI bus hasn’t been

implemented in hypervisor so some changes are required in these drivers to configure them as

MMIO based devices. Figure 13 shows the code that needed to be added in virtio_blk.c file.

Call this function in “init” of driver to register this device as MMIO device.

“vblk_resources” array represents resources of this device. Entry at index zero represents start

and end address of this MMIO device and entry at index 1 represents interrupt line for this

device. In our case, GPIO0 interrupt is used for this purpose.

A file should be created for this device in “/dev” folder. There are two options for it. First is to

create file by ourselves and second by adding the entry in Makefile for embedded rootfs. To

create device file, command “mknod /dev/vda b 253 0” is used (where ‘b’ represents block

device, ‘253’ represents major of device, and ‘0’ represents minor of device). To automate the

process, add the code in “linux/embedded_rootfs/pkg_makefiles/device_file.mk” as shown in

Figure 14.

For mounting disk partition in guest, simply make a directory using “mkdir” and mount it

using mount command. “/dev/vdaX” are partition file just like “/dev/sdaX” in normal systems.

27

Figure 13: Code Snippet from virtio_blk.c file

Figure 14: Commands for Device Creation

static struct platform_device *vblk_virtio_device;

static void register_mmio_device(void)

{

int ret;

struct resource vblk_resources[] = {

{

.flags = IORESOURCE_MEM,

}, {

.flags = IORESOURCE_IRQ,

}

};

vblk_virtio_device = platform_device_alloc("virtio-mmio", 0);

if(!vblk_virtio_device)

printk("***%s device struct initialization failed\n",__func__);

vblk_resources[0].start = 0x1180070000200ull;

vblk_resources[0].end = vblk_resources[0].start + 0x120;

vblk_resources[1].start = OCTEON_IRQ_GPIO0;

vblk_resources[1].end = OCTEON_IRQ_GPIO0;

ret = platform_device_add_resources(vblk_virtio_device, vblk_resources,

ARRAY_SIZE(vblk_resources));

if (ret)

printk("***%s: device resource allocation failed\n",__func__);

ret = platform_device_add(vblk_virtio_device);

if (ret)

printk("***%s: device add failed\n",__func__);

}

sudo mknod ${ROOT}/dev/vda b 253 0

sudo mknod ${ROOT}/dev/vda1 b 253 1

sudo mknod ${ROOT}/dev/vda2 b 253 2

sudo mknod ${ROOT}/dev/vda3 b 253 3

sudo mknod ${ROOT}/dev/vda4 b 253 4

28

4.7.2 Vhost Block Configuration

Vhost block is used in host kernel as client interface for Virtio_Blk driver. Vhost block is not

part of linux kernel and only some test codes are available on internet. Some of the builds are

using some structures and method which are in-compatible with CAVIUM MIPS64 kernel as

well as with Vhost implementation. Once the module is built and loaded in host kernel, a file for

this module should be created. Following command is used to create vhost-blk file, where ‘10’ is

major for “misc devices” and ‘243’ is minor for “vhost block”.

mknod /dev/vhost-blk c 10 234

Now all the major configurations for Virtio Block and Vhost Block are complete in both

guest and host end.

 4.7.3 Creation of Virtual Disk for Hypervisor

A simple raw file is used as virtual disk. Some methods are used to create partitions in raw file

and to mount these partitions in host. Data can be transferred from host to guest by mounting

these partitions in host. Following steps must be taken to create and mount disk file.

 Create Disk File: To create disk file, execute the following command. This will create

null file of 512 * 262144 = 128MB in current directory.

“dd if=/dev/zero of=./disk.img bs=512 count=262144”

 Attach Loopback Device to File: To attach file to loopback device, execute the

following command. It will attach file to loopback device. You can confirm it using

losetup /dev/loop0 command.

“losetup /dev/loop0 ./disk.img”

 Create Partitions: Now simply create partitions using fdisk command.

“fdisk /dev/loop0”

It is just a raw file and not a device that’s why you need to provide cylinder count

manually. In fdisk, go to extended menu by typing ‘x’ and then set cylinder count by

typing ‘c’. Each cylinder represents 16065 sector or 8 MB. So set cylinders according to

size of disk. Verify partitions by typing ‘v’ before writing back partition table. Now

detach file from loopback device by using command.

29

“losetup –d /dev/loop0”

 Attach Loopback Device to Partitions: To attach loopback device to a specific partition

in file, offset of that partition must be known. This can be done using fdisk –lu ./disk.img.

It output is shown below.

“Start” shows sector offset of partition. Byte offset can be calculated by multiplying it

with 512. In this case byte offset of partition is 63 * 512 = 32256. To attach this partition

to loopback device, execute the following command.

“losetup –o 32256 /dev/loop0 ./disk.img”

 Create Filesystem: After attaching partition to loopback device, create filesystem using

“mkfs” command like mkfs.ext2 /dev/loop0

 Mount Partitions: To mount partition, first create a directory for mounting if it is not

present already. Now use mount command to mount this partition.

“mount –t ext2 /dev/loop0 /mnt/vfs”

After mounting, the disk is ready to be used. Data can be copied to/from disk. Un-mount

partition after using it and detach file from loopback device.

“umount /mnt/vfs”

“losetup –d /dev/loop0”

If you already have file system and you only want to mount it then follow only attach and

mount the already created disk.

Device Boot Start End Blocks Id System

./disk.img1 63 257039 128488+ 83 Linux

30

4.8 Networking

For enabling networking in type-II hypervisor, implementation of a network device was

inevitable. To implement an efficient solution, type-II hypervisor makes use of a para-virtualized

approach. A para-virtualized device driver in guest (i.e. Virtio) as front-end device driver and

vhost-net in host as backend driver are used. Virtio creates the networking device inside the

guest. Vhost-net is a kernel module in host which connects directly with the networking interface

of host system. Both of them are linked through hypervisor's network device implementation.

Hypervisor implements the network device, which acts as a bridge between guest's para-virtual

device driver and vhost-net on host OS. Figure 15 shows the complete networking infrastructure

of type-II hypervisor.

The implementation comprises of 3 units; Virtio-net, vhost-net and network device implemented

in hypervisor. Providing complete network implementation requires

a) The guest is able to detect and communicate with a networking device.

Figure 15: Networking Infrastructure of Type-2 Hypervisor

b) A networking interface with the host system which will be communicating with a real

interface on host

31

c) A link between the two, which routes the network traffic from the guest device to host's

interface.

To successfully implement above requirements, three units were designed which are described

below.

4.8.1 Virtio-Net

Virtio is a series of efficient, well-maintained Linux drivers which can be adapted for different

hypervisor implementations. Virtio is Linux internal abstraction API. It is a standardize

virtualization solution for network and disk device drivers. The guest's device driver is only

aware that it is running in a virtual environment, and communicates with the hypervisor. This

enables guests to get high performance network and disk operations, and gives most of the

performance benefits of para-virtualization. Virtio can be used to implement number of types of

devices. It provides virtio-block, virtio-net, virtio-pci, virtio-console, etc.

Virtio devices communicate through virtual device using Virtqueues. Each device may have

zero or more queues. In case of network device, two queues are used these are called transfer

queue and receiver queue. Each queue has size parameter which implies number of entries and

size of queue. Each queue has three parts

 Descriptor Table

 Available Ring

 Used Ring

These are contiguous in memory. To send buffer to the device, drivers fills a slot in

descriptor table and write its index in to the available ring. After consuming the buffer, device

writes its index to used ring and generates an interrupt.

These rings are created when driver probes the device. Device specifies the maximum

number of buffers. After reading this value from the device, the driver create queue buffers and

then share memory address of these buffers with the device using specific registers.

Network device is implemented using virtio-net. In native kernels, virtio devices are

implemented as standard PCI devices but emulation of PCI bus would be less efficient and more

time consuming. MMIO (Memory Mapped Input Output) device is implemented which is faster

32

and relatively easy to implement. For this purpose virtio-mmio driver is used which is a wrapper

driver for MMIO based virtio devices. It performs all the functionality using MMIO instead of

PCI bus.

To implement virtio-net as MMIO device, this device needs to be registered as platform

device and specify its base address and interrupt line.

4.8.2 Vhost-Net

For the backend driver implementation, vhost-net is used. Vhost net is a character device that can

be used to reduce the number of system calls involved in virtio networking. User-space

hypervisors are supported as well as kvm. The vhost drivers in Linux provide in-kernel virtio

device emulation. The vhost-net driver emulates the virtio-net network card in the host kernel to

reduce the number of system calls required for data communication. Vhost-net is the oldest vhost

device and the only one which is available in mainline Linux. Experimental vhost-blk and vhost-

scsi devices have also been developed.

When the hypervisor starts, it initializes vhost-net instance with several ioctl calls. A

kernel thread is created called "vhost worker thread". The job of the worker thread is to handle

I/O events and perform the device emulation. Vhost does not emulate a complete virtio PCI

adapter. Instead it restricts itself to virt-queue operations only.

The vhost worker thread waits for virtqueue kicks and then handles buffers that have

been placed on the virtqueue. vhost-net takes packets from the tx virtqueue and transmitting

them over the tap file descriptor. File descriptor polling is also done by the vhost worker thread.

In vhost-net the worker thread wakes up when packets come in over the tap file descriptor and it

places them into the rx virtqueue and calls the hypervisor using irqfd. Hypervisor then generates

an interrupt to notify guest about packet availability.

When a guest notifies device after placing buffers onto a virtqueue, there needs to be a

way to signal the vhost worker thread that there is work to do. To notify vhost about packet

availability, hypervisor uses eventfd file descriptor which the vhost worker thread watches for

activity.

33

On the return trip from the vhost worker thread to interrupting the guest a similar

approach is used. Vhost takes a "call" file descriptor which it will write to in order to kick the

guest. The vhost instance only knows about the guest memory mapping, a kick eventfd, and a

call eventfd.

4.8.3 Network device in hypervisor

For enabling the communication between the virtio-net and vhost-net, control signals needed to

be sent and received. A network device is implemented in the hypervisor which passes the

control signals in both directions.

Network device in hypervisor implements some device specific registers which are being

used by guest driver for virtqueues sharing and device controlling. Device provides the

maximum limit of buffers which is read by the virtio driver. After reading this value, virtio driver

creates virtqueues and share them with the device. Once these queues are available, device share

these queues with the vhost along with the eventfd for kick and call mechanism for each queue.

After creating queues, driver write VIRTIO_CONFIG_S_DRIVER_OK in status register

of device which means driver acknowledges the device as valid device. After receiving

acknowledgement from driver, device opens tap interface and share it descriptor with vhost to

complete set-up of back-end driver. Once the setup is complete, vhost worker thread is created.

When virtio driver needs to transfer data, it fills one of the descriptors and notifies the

device. Device in return kicks vhost using eventfd. After receiving kick from network device of

hypervisor, vhost transfer data over network using Tap descriptor.

When vhost receives data, it place in one of the descriptor of receive queue and notifies

the network device of hypervisor using irqfd. After receiving call from vhost, network device of

hypervisor generates an interrupt and notifies guest about available data.

4.8.4 Execution flow of networking

Execution flow of networking follows the steps described below.

1. Hypervisor opens vhost and make some initial settings.

2. The guest is informed that the virtio device is enabled.

3. Virtio provides the virt-queues to hypervisor's network device.

34

4. The hypervisor's network device shares it with the vhost.

5. Hypervisor’s network device shares kick and call event fd for each queue.

6. Hypervisor’s network device shares tap fd with vhost.

7. After receiving tap fd, vhost creates worker thread and starts polling event fd and tap fd.

8. After receiving packet, vhost places in descriptor of receive queue and notifies

hypervisor’s network device using irqfd.

9. Hypervisor’ network device generates interrupt to notify guest.

10. To send packet, virtio driver fills one of descriptor of transfer queue and notify device.

11. Hypervisor’s network device kicks vhost using eventfd.

12. Vhost transmits packet over tap fd.

Figure 16 shows the communication between the units involved in network implementation.

Figure 16: Communication between Virtio-Net, Vhost-Net and Network Device

35

5. Performance Evaluation

For evaluating the performance of hypervisor, different parameters are calculated. Tests used for

evaluation were both performed on native system and hypervisor. Native MIPS64 system is

Cavium OCTEON CN5700. It was used for both debugging and experimenting purposes. It has

12 cores, 800MHz clock rate, and 2MB L2 Cache. There are 4 slots for 1G RAM each. Type-2

hypervisor emulates the hardware of this board. So, the comparison is performed between the

execution of hypervisor emulating OCTEON CN5700 and actual native system i.e. real board

OCTEON CN5700.

5.1 Booting Time

The first and foremost comparison is the amount of time taken during the successful booting of

system. Time consumed to completely boot the linux system over native vs virtual machine is

shown in the Fig 17. These values are mean of the multiple readings. The time taken by the

native system is just 47 sec. While hypervisor takes approximately 75 sec.

Figure 17: Comparison of Booting Time

36

5.2 lmbench

Memory bandwidth or data transfer rate is fundamental to evaluating a system. lmbench has been

used in profiling the system’s memory bandwidth for different memory operations. Table 1

shows the memory bandwidth for different memory operations. The readings were taken for

2MB memory size. “rd”, “frd”, “fwr” and “wr” shows data transfer rate by processor for reading

and writing 2MB contents. “rdwr” measures the time to read data into memory and then write

data to the same memory location and shows transfer rate for 2MB memory size. “cp” and “fcp”

shows data coping rate. “bzero” and “bcopy” measures how fast the system can bzero and bcopy

memory respectively. The results are shown for both hypervisor and native hardware.

Table 1: Lmbench Output for Different Memory Operations

Operations Native

System

(Mb/sec)

 Hypervisor

(Mb/sec)

rd 1870 126

wr 8190 134

rdwr 1544 50

cp 749 65

fwr 3055 40

frd 840 38

fcp 520 20

bzero 3123 24

bcopy 673 20

The table 2 shows the transfer rate of mmap 2MB file for both native and hypervisor. The

“open2close” includes the I/O operations (e.g opening /closing a file) involved in file mmap,

while “mmap_only” excludes the I/O operations. Table 3 shows the latencies (in millisecond) in

37

native system and hypervisor, while performing the file mmap. Table 4 and 5 shows the

bandwidth and latencies for 2Mb file reading respectively.

Table 2: Lmbench Bandwidth Results for File mmap

Memory

bandwidth for

file mmap

Native System

(Mb/sec)

Hypervisor

(Mb/sec)

open2close 856 9.5

mmap_only 1454 68

Table 3: Lmbench Latency Results for File mmap

Latencies for file

mmap

Native System

(msec)

Hypervisor

(msec)

open2close 1.2 100.5

mmap_only 0.7 15

Table 4: Lmbench Bandwidth Results for File Reading

Memory

bandwidth for

file reading

Native System

(Mb/sec)

Hypervisor

(Mb/sec)

open2close 810 13

io_only 830 13.3

38

Table 5: Lmbench Latency Results for File Reading

Latencies for file

reading

Native System

(msec)

Hypervisor

(msec)

open2close 2.5 153

io_only 2.5 151

Table 6 shows the data transfer rates for two operations. “bw_unix” measure how fast the

parent process can read the data in size-byte chunks from the pipe. “bw_pipe” measures data

transfer rate between two processes through pipe.

Table 6: Lmbench Bandwidth Results for pipe and unix

 Native System

(Mb/sec)

Hypervisor

(Mb/sec)

bw_pipe 850 2.75

bw_unix 1450 3.7

The table 7 below shows the network through put of hypervisor and native system. It a

client-server test program with a message size of 65536 bytes.

Table 7: Lmbench Results of Network Through-put

 Native System

(Mb/sec)

Hypervisor

(Mb/sec)

bw_tcp 11.57 2.01

39

5.3 STREAM

STREAM benchmark is also executed, which performs these 4 basic memory operations and

measure transfer rates. “Copy” simply copy one element from memory to another. “Scale”

multiples a value from memory and save the result back to memory. “Sum” is performing sum

operation and saving it back to memory. “Triad” performs the scaling and summation operation.

1. copy a(i) = b(i)

2. Scale a(i) = q*b(i)

3. Sum a(i) = b(i) + c(i)

4. Triad a(i) = b(i) + q*c(i)

The figure 18 shows the transfer rates and figure 19 shows the latencies for all above operations

of both hypervisor and native.

Figure 18: STREAM Results for hypervisor and Native System

5.4 Linux Testing Project (LTP)

For functional testing of Type-II hypervisor, LTP’s syscall tests were executed. This test is

executed on bare metal (Cavium OCTEON CN5700) and also on hypervisor for comparison.

Total 954 system calls tests were performed on the native system. 253 out of 954 tests were

40

skipped or failed due to configuration issues for MIPS or the some commands are not supported

by the native system. 701 tests were successful on native system. These successful tests were

performed on the hypervisor to test the behavior of virtual system. All of the tests passed on the

native system were also passed on hypervisor.

Figure 19: Latencies for Stream Operations

