

High Performance Computing and Networking Lab

Center for Language Engineering

Al-Khawarizmi Institute Of Computer Science,

University Of Engineering and Technology, Lahore

This document gives detailed description of

developments that were made during the 4th

milestone of this project. It provides progress

report explaining Urdu Specific issues and

solutions for query response System

ہمکنار پاکستان
Urdu Search Engine

Urdu Specific Issues and Solutions for
query Response System

Contents
 .. 1

Contents .. 3

1. Query Response System: .. 4

Solr Cloud Configuration Steps ... 5

Configuration management via zkcli.sh .. 6

2. Zookeeper configuration for query Response System .. 7

3. Urdu Specific Issues .. 7

Urdu Font Problem ... 7

Solution: .. 8

Stop Words Removal Problem .. 8

Solution: .. 8

Urdu Keyboard Problem ... 8

Solution: .. 8

4. Appendix A .. 9

Schema.xml ... 9

Jetty.xml Update ... 11

5. References .. 12

1. Query Response System:

For query response and indexing system, it was decided to run Apache Solr in cloud mode instead of

single mode. It has a lot of benefits over single mode e.g. if duration operation, it is required to reload

configuration, then it can be done very easily without interruption of Solr using Zookeeper ensemble

that will be discussed later. Similarly, in cloud mode, there should be more than one instances of Solr

are running. In this case, if any instance goes down due to some problem, request s could be served very

easily on other Solr instances running in the cloud. Configuration details are little bit different in cloud

mode as compared to single mode. One major difference is use of Zookeeper ensemble for

configuration management. We have already used external Zookeeper ensemble for Hbase

configuration. One option was to use that one for Solr management also. But it was decided to run

separate zookeeper ensemble for query response system so that this system should not depended on

any backend services running on other systems. Configuration details of ensemble is given below

section. For query response system, single zookeeper server was used in ensemble [1][2][3].

As for as Solr index storage is concerned, by default it uses local file system to store index structure in

form of blocks. But it can be moved to distributed file systems such as Apache Hadoop (HDFS) etc. But at

basic level, local file system is enough and it can handle millions of documents very easily. But

distributed file system for index has its own benefits for example one can post process index via Hadoop

very easily that is very difficult on local file system[4][5].

Architecture diagram of query response system has been show in Figure 1. In current configuration, due

to resources problem, we have to use single zookeeper ensemble although in production there should

be at least three zookeeper instances running. In figure, “Humkinar Site core” block diagram contains

website source code related portion e.g. HTML5, PHP, Apache Webserver and Redis files etc.

Configuration details of Solr and Zookeeper has been discussed in next section.

Figure 1: Query Response System Architecture

Solr Cloud Configuration Steps
Following steps were taken to configure Apache Solr in cloud mode.

i. Download Solr version as recommended by Apache Nutch (At time of configuration, it was

4.10.3).

ii. Copy example directory and rename to node1

iii. Schema.xml file in node1/solr/collection1/conf has been updated as discussed in 3rd deliverable.

It is annexed in Appendix also.

iv. In order to start Apache Sor at first time, configuration files should be uploaded to zookeeper

server and following command has been used for this purpose. Solr default port is 8983 and

zookeeper default port is 2181. We have changed solr port to 8900. This command upload given

configuration files to zookeeper and also starts Solr in cloud mode.

In order to quit Solr, type ctrl+c from keyboard. It will stop the solr services.

v. Replica of $SOLR_HOME was created and moved to second system (10.11.21.41) where solr

second will be configured.

vi. In order to run Solr after first time, following command should be used. (Now we do not need to

upload configuration again to Zookeeper as it has been already loaded at first time)

vii. Similar command should be used on second system to start Solr second replica.

viii. In order to maintain session, Solr should be started via screen utility (or as backend service)

ix. Solr admin can be accessed via 10.11.21.40:8900 URL in browser. Figure 2 show this admin

panel which gives cloud information. It shows that Solr node at 10.11.21.40 is working properly

and is leader while Solr at 10.11.21.41 is recovering.

cp –r $SOLR-HOME/example $SOLR_HOME/node1

Cd $SOLR_HOME/node1

Java java -Djetty.port=8900 -Dbootstrap_confdir=./solr/collection1/conf -

Dcollection.configName=myconf -DnumShards=1 -DzkHost=10.11.21.40:2181 -jar start.jar

Cd $SOLR_HOME/node1

java -Djetty.port=8900 -DzkHost=10.11.21.40:2181 -jar start.jar

Figure 2: Solr Cloud Admin Web Interface of Humkinar

Configuration management via zkcli.sh
It is quite possible that during the operation, configuration needs to be updated. Instead of restarting

Solr, Zookeeper provides option to upload latest copy of configuration files without the interruption of

any other service. When new configuration is upload, then old configuration is removed. In order to

upload or download latest copy of Solr Cloud configuration, following steps should be taken.

i. To download fresh copy of current configuration of Solr cloud, execute following commands in

terminal on 10.11.21.41 or 10.11.21.40.

ii. Similarly, in order to upload latest configuration (after some update e.g. schema.xml changed

etc.) following command should be used.

Note: new_config is updated configuration directory that is being uploaded.

cd $SOLR_HOME

mkdir output

sh node1/scripts/cloud-scripts/zkcli.sh -zkhost 10.11.21.40:2181 -collection collection1 -

confname myconf -solrhome node1/solr -cmd downconfig -confname myconf -confdir output

Cd $SOLR_HOME

sh node1/scripts/cloud-scripts/zkcli.sh –zkhost 10.11.21.40:2181 -collection collection1 -cmd

upconfig -confname my_new_config -confdir node1/solr/conf

iii. Many other properties can also be updated or changed using zkcli.sh scripts. Some examples can

also be found in [6].

2. Zookeeper configuration for query Response System
In order to configure Zookeeper configuration for Solr Cloud, following steps were taken.

i. Download zookeeper that is compatible with Solr. We have used 3.4.x version.

ii. Extract binary and create a new configuration file in $ZOOKEEPER directory.

iii. Update zoo1.cg with following code

iv. Create a directory zookeeperData in $ZOOKEEPER_HOME. It will keep zookeeper data etc.

v. To start/stop zookeeper, run following commands

vi. Use “jps” command to know Zookeeper daemon is running or not and “nc” to know the health

of server (as explained in Hbase section).

3. Urdu Specific Issues
While implementing query response system for Humkinar, we have to face many problems specific for

Urdu language. We have also deployed a prototype of Humkinar website (written in PHP) to test our

search results. While implementing this website, many type of problems occurred from query

composition to rendering. All such problems has been discussed one by one.

Urdu Font Problem

Among several problems those we encountered at the frontend (Humkinar website), a major problem

was the selection of Urdu font that would have been compatible with our theme style and as well light

and readable. Default browser font could not meet out criteria.

Our selection of initial fonts, initial selection of fonts had several problems. For example, Urdu font that

we found compatible with our website, had problems of split words. For example, the word “ تکائنا “

and many similar words like these especially containing the Urdu letter “Hamza” in it was more prone to

this problem. The word لله also had the same problem, these sequences of Urdu alphabets were not

supported by some fonts.

cd $ZOOKEEPER_HOME/
cp conf/zoo_sample.cfg conf/zoo1.cfg

tickTime=2000
dataDir=/home/hpcnl/USE/zookeeper-3.4.6/zookeeperData
clientPort=2181

bin/zkServer.sh start conf/zoo1.cfg

bin/zkServer.sh stop conf/zoo1.cfg

Moreover, some fonts had missing alphabets and rendering problems. For example, Urdu alignment is

from right. However, the standard fonts we used were aligned to the left. The browser treated them as

English and were not displayed correctly.

Solution:
First font that met our initial criteria was “Noori Nastalique”. However, this font was larger than 10 MBs

and was not suitable for frontend development from the perspective of site performance. We switched

to “Nafees Nastalique” that was small in size (less than 3mb) and also supported all Urdu alphabets

efficiently.

Stop Words Removal Problem

Another problem that we were facing was the scoring of documents based on stop words. For example,

the query اننگز کا اجٓ اختتام یدوسر یخان ک اریاعتدال پسند شہر gave results, those were matched based on trivial

stop words as shown below.

This created unwanted results on the search page.

Solution:
The standard solution was implemented at Solr end which takes a list of stop words in a flat file.

The Solr instance can be configured to include the stop words file in its schema.xml. The list of

stop words was provided by Center of Language Engineering (CLE, UET Lahore).

Urdu Keyboard Problem
One of the major tool that had to be included at the web app was an Urdu keyboard for users in

case they were not adept to standard keyboard for Urdu use. The keyboard had to be designed

from the scratch.

Solution:
The keyboard was designed and made functional by Center of Language Engineering (CLE, UET,

Lahore) and installed in the web app. Along with the standard keyboard, a user can use on

screen Urdu keyboard for better understanding for Urdu characters’ distribution on a physical

keyboard. A screenshot of the keyboard is shown below.

This keyboard has standard Urdu alphabets distribution and English keyboard option also.

4. Appendix A
This section includes those Apache Solr configuration files that were updated while configuration it in

cloud mode for Humkinar project.

Schema.xml
This file defines schema of a document that is being index with some other useful properties such as

store or index etc. If store is true then it means that corresponding field value should be stored and

index means value should be indexed. There are some default search fields and unique key related

configuration in this file also. Next section gives complete details of schema.xml file fields. Extra

information such as classes’ definitions for each field along other configuration has been skipped in

below details.

<fields>

<field name="id" type="string" stored="true" indexed="true" required="true"/>

<!-- core fields -->

<field name="batchId" type="string" stored="true" indexed="false"/>

<field name="digest" type="string" stored="true" indexed="false"/>

<field name="boost" type="float" stored="true" indexed="false"/>

<!-- fields for index-basic plugin -->

<field name="host" type="url" stored="false" indexed="true"/>

<field name="url" type="url" stored="true" indexed="true"/>

<field name="orig" type="url" stored="true" indexed="true"/>

<!--

 stored=true for highlighting, use term vectors and positions for fast

highlighting

-->

<field name="content" type="text_general" stored="true" indexed="true"/>

<field name="title" type="text_general" stored="true" indexed="true"/>

<field name="cache" type="string" stored="true" indexed="false"/>

<field name="tstamp" type="date" stored="true" indexed="false" default="NOW"/>

<!-- catch-all field -->

<field name="text" type="text_general" stored="false" indexed="true"

multiValued="true"/>

<!-- fields for index-anchor plugin -->

<field name="anchor" type="text_general" stored="true" indexed="true"

multiValued="true"/>

<!-- fields for index-more plugin -->

<field name="type" type="string" stored="true" indexed="true" multiValued="true"/>

<field name="contentLength" type="string" stored="true" indexed="false"/>

<field name="lastModified" type="date" stored="true" indexed="false"/>

<field name="date" type="tdate" stored="true" indexed="true"/>

<!-- fields for languageidentifier plugin -->

<field name="lang" type="string" stored="true" indexed="true"/>

<!-- fields for subcollection plugin -->

<field name="subcollection" type="string" stored="true" indexed="true"

multiValued="true"/>

<field name="author" type="string" stored="true" indexed="true"/>

<field name="tag" type="string" stored="true" indexed="true" multiValued="true"/>

<field name="feed" type="string" stored="true" indexed="true"/>

<field name="publishedDate" type="date" stored="true" indexed="true"/>

<field name="updatedDate" type="date" stored="true" indexed="true"/>

<!--

 Custom fields created for indexing our OCR processed books

-->

<field name="publisher" type="string" stored="true" indexed="false"/>

<field name="publisherURL" type="string" stored="true" indexed="false"/>

<field name="domain" type="string" stored="true" indexed="false"/>

<field name="group" type="string" stored="true" indexed="true"/>

<!-- Custom fields created for images and business data -->

<field name="catagory" type="string" indexed="true"/>

<field name="address" type="text_general" indexed="true" stored="true"/>

<field name="city" type="string" indexed="true" stored="true"/>

<field name="country" type="string" indexed="true" stored="true"/>

<field name="rep" type="string" stored="true" indexed="false"/>

<field name="rep_title" type="string" stored="true" indexed="false"/>

<field name="webid" type="url" stored="true" indexed="false"/>

<field name="phone" type="string" indexed="false" stored="true"/>

<field name="fax" type="string" indexed="false" stored="true"/>

<field name="mobile" type="string" indexed="false" stored="true"/>

<field name="email" type="string" indexed="false" stored="true"/>

<!-- fields for Ad server -->

<field name="keywords" type="text_general" stored="true" indexed="true"/>

<field name="adpath" type="url" stored="true" indexed="false"/>

<field name="aratio" type="text_en_splitting" stored="true" indexed="true"/>

<field name="width" type="string" stored="true" indexed="false"/>

<field name="higth" type="string" stored="true" indexed="false"/>

<field name="content_urdu" type="text_general" stored="true" indexed="true"/>

<field name="title_urdu" type="text_general" stored="true" indexed="true"/>

<!-- Field for poetry books name -->

<field name="book_name" type="string" indexed="true" stored="true"/>

<!-- Field for Arabic text -->

<field name="text_arabic" type="string" indexed="false" stored="true"/>

<!-- Field for defination of dictinary words. -->

<field name="dict_word" type="exactstring" indexed="true" stored="true"/>

<field name="def_dict" type="string" indexed="false" stored="true"/>

<!--

 Ad Server variable (Not used in production currently)

-->

<field name="bid_v" type="float" stored="true" indexed="true" default="0"/>

<!-- fields for creativecommons plugin -->

<field name="cc" type="string" stored="true" indexed="true" multiValued="true"/>

<!-- fields for tld plugin -->

<field name="tld" type="string" stored="false" indexed="false"/>

<field name="_version_" type="long" indexed="true" stored="true"/>

</fields>

<uniqueKey>id</uniqueKey>

<defaultSearchField>content_urdu</defaultSearchField>

<solrQueryParser defaultOperator="OR"/>

Jetty.xml Update
By default, Apache Solr listen on all interface. In order to limit this excess,

$SOLR_HOME/node1/etc/jetty.xml file was updated with following code. All other configuration were

left as it is (default).

 <Call name="addConnector">

 <Arg>

 <New class="org.eclipse.jetty.server.bio.SocketConnector">

 <Set name="host"><SystemProperty name="jetty.host"

default="127.0.0.1"/></Set>

 <Set name="port"><SystemProperty name="jetty.port"

default="8983"/></Set>

 <Set name="maxIdleTime">50000</Set>

 <Set name="lowResourceMaxIdleTime">1500</Set>

 <Set name="statsOn">false</Set>

 </New>

 </Arg>

 </Call>

<Call name="addConnector">

 <Arg>

 <New class="org.eclipse.jetty.server.bio.SocketConnector">

 <Set name="host"><SystemProperty name="jetty.host"

default="10.11.21.40"/></Set>

 <Set name="port"><SystemProperty name="jetty.port"

default="8983"/></Set>

 <Set name="maxIdleTime">50000</Set>

 <Set name="lowResourceMaxIdleTime">1500</Set>

 <Set name="statsOn">false</Set>

 </New>

 </Arg>

</Call>

Solr was restricted to listen on localhost and 10.11.21.40 interface. It was required due to the reason

that it was decided to use another interface in search management system.

5. References
1. http://www.chrissulham.com/sitecore-on-solr-cloud-part-1/

2. https://lucene.apache.org/solr/4_10_3/

3. http://zookeeper.apache.org/doc/r3.4.10/zookeeperStarted.html

4. https://www.tutorialspoint.com/apache_solr/apache_solr_on_hadoop.html

5. https://hortonworks.com/hadoop-tutorial/searching-data-solr/

6. https://cwiki.apache.org/confluence/display/solr/Command+Line+Utilities

http://www.chrissulham.com/sitecore-on-solr-cloud-part-1/
https://lucene.apache.org/solr/4_10_3/
http://zookeeper.apache.org/doc/r3.4.10/zookeeperStarted.html
https://www.tutorialspoint.com/apache_solr/apache_solr_on_hadoop.html
https://hortonworks.com/hadoop-tutorial/searching-data-solr/
https://cwiki.apache.org/confluence/display/solr/Command+Line+Utilities

