

High Performance Computing and Networking Lab

Center for Language Engineering

Al-Khawarizmi Institute Of Computer Science,

University Of Engineering and Technology, Lahore

This document gives detailed description of

developments that were made during the 4th

milestone of this project. It provides progress

report on local cluster development and crawling

system along with code and test case

ہمکنار پاکستان
Urdu Search Engine

Setting Up Local Cluster and Arbitrary
Crawling

1 Contents
1 Contents .. 3

1. Setting Up Local Cluster: ... 4

1.1 Search Management (SM) .. 4

1.2 Master ... 5

1.3 Node1 .. 5

1.4 Node2 & Node3 .. 5

1.5 Apache Hadoop Configuration: ... 6

1.6 Apache Hbase Configuration: ... 8

1.7 Apache Zookeeper Configuration ... 10

2 Arbitrary Crawling: .. 11

Apache Nutch Configuration ... 11

3 Appendix A .. 14

Solrindex-mapping.xml ... 14

Regex-urlfilter.txt .. 15

4 References: ... 15

1. Setting Up Local Cluster:

As it is already discussed (3rd deliverable report) that Apache Hadoop comprises different daemons e.g.

NameNode, JobTracker, DataNode and TaskTracker etc. In order to setup local cluster for crawling,

Apache Hadoop should be configured in fully distributed mode. In this mode, it is recommended that

NamdeNode and JobTracker daemons should be configured on single separate machine (known as

master) and other daemons (DataNode and TaskTracker) should be configured on remaining systems

(known as slaves) [1][2].

Similarly Hbase should also be configured in fully distributed mode i.e. HMaster should be on separate

node (known as master) and RegionServers and QuorumPeer (Zookeeper) should be on separate

machines (known as salves).

Figure 1 shows deployed network diagram used for local cluster development and crawling system. All

these systems are Linux based system. Details of each system is given below sections.

Figure 1: Local Cluster Network Diagram

1.1 Search Management (SM)
Basic indexing system and search management is deployed on this system. Apache Solr is configured here.
Humkinar website is also configured on this system via Apache web server. Complete configuration details
of different services running on this system is provided in a separate report on query response system.

1.2 Master
This is the master node in Hadoop cluster. On this machine, Apache Hadoop daemons Namenode and
Jobtracker are running. Hadoop is configured as multi node cluster (one master and three slave nodes).
Apache Hive is also configured at this machine for data analysis. One of three Apache Hbase region server
daemons are also running here (slave node). Solr cloud node is also running on this machine as a backup.
This node is single point of failure (in case of Hadoop 1.x version) i.e. that if this systems goes down all
running jobs will be lost. In latest version of Hadoop (2.x) they have provide high availability of NameNode
that reduces that reduces the chance of single point of failure[3].

1.3 Node1
Apache Hbase master daemon (Hmaster) is configured here. This machine is also running as Hadoop slave
node (Datanode and Tasktracker daemons running on this machine). Our crawler is also configured here
and it is crawling continuously. As our hbase is running in fully distributed mode (one master and three
slave nodes). For that we are using external zookeeper ensemble that consists of three instances. One of
its instance is running on this machine.

1.4 Node2 & Node3
These nodes are running as slave nodes for Hadoop and hbase i.e Datanode and Tasktracker. Hadoop
slave daemons and regionserver which is hbase slave daemon are also running on both of these machines.
On each machine, Apache Zookeeper ensemble instance is running. On node2 Hadoop daemon Secondry

Namenode is also running.

In order to add new Datanodes (slaves) then its configuration will be same as in node3 hadoop

configuration.

Similarly Hbase was also configured on these systems in such a way that HMaster daemon of Hbase was

configured on Node1, region servers were configured on Master, Node2 and Node3 and Zookeeper

ensemble was configured on Node1, Node2 and Node3. This distributed was deployed by following [4]

tutorial. Table 1 gives the details of daemons on each system. Configuration details of Apache Hadoop

and Apache Hbase in fully distributed mode is described in below section.

Table 1: Local Crawling System services (Daemons) Distribution

System Configured Daemons

Master (10.11.21.41) NameNode, JobTracker, SecondryNameNode, RegionServer,

solr (replica)

Node1 (10.11.21.42) DataNode, TaskTracker, HMaster, zookeeper server

Node2 (10.11.21.43) DataNode, TaskTracker, Region Server, zookeeper server

Node3 (10.11.21.44) DataNode, TaskTracker, Region Server, zookeeper server

SM (10.11.21.40) Apache Solr, Httpd (web server), Redis (In cache memory),

Index Storage

/etc/hosts file was updated on all systems with following information. It was required both for Hadoop

as well as for Hbase configuration.

1.5 Apache Hadoop Configuration:
First problem was the Apache Hadoop version selection. It was required that version should be

compatible with Hbase and Nutch Crawler. At the time of configuring local cluster, it was found that

compatible version of Hadoop and Hbase with Nutch 2.x are 1.2.1 and 0.94.x respectively. Also Hadoop

1.2.1 is most stable release in 1.x series [5].

In order to configure Apache Hadoop in fully distributed mode, following steps were carried out.

i. Java Development KIT (JDK) 8.x was downloaded and installed on each system and

corresponding environment variables were also set in .bashrc file e.g. $JAVA_HOME etc.

ii. Apache Hadoop version 1.2.1 was download from nearest mirror and copied to each node.

iii. $HADOOP_HOME/conf/core-site.xml was updated (on Master and all nodes) with following

code. ($HADOOP_HOME is the directory where Hadoop binary was extracted)

Note: There are many other tags that we can use according to our requirements but not required at this
time.

10.11.21.40 solr
10.11.21.41 master regionserver1
10.11.21.42 node1 hmaster zkserver1
10.11.21.43 node2 regionserver2 zkserver2
10.11.21.44 node3 regionserver3 zkserver3

<configuration>
<property>
<name>hadoop.tmp.dir</name>
<value>/home/hpcnl/crawler/hadoop-1.2.1/tmp</value>
<description>A base for other temporary directories.</description>
</property>
<property>
<name>fs.default.name</name>
<value>hdfs://master:9000</value>
<description>The name of the default file system.</description>
</property>

iv. $HADOOP_HOME/conf/mapred-site.xml was updated with following code on all machines
(master and slaves)

v. $HADOOP_HOME/conf/hdfs-site.xml was updated with following code on all machines (master
and slaves). Replication factor should be more than 2 in deployment cluster to avoid data loss.

vi. Updated $HADOOP/conf/master on Master system only with following information

This file contains information about where SecondryNamenode daemon will run started. For our

case it is master system.

vii. Updated $HADOOP_HOME/conf/slaves on master machine only (Machines where data nodes

will be running) like

Note: On slave nodes, do not edit conf/masters or conf/slaves that contains information of

localhost. Only the thing that you can change is localhost to IP of that machine. For example on

node1 you can change conf/ (master or slave) to node1 instead of localhost.

viii. Made all Hadoop systems passwordless i.e. they can SSH each other without password and user

name should be same on all nodes. In our case, user name is “hpcnl”. First we generate key pairs

<configuration>
<property>
<name>mapred.job.tracker</name>
<value>master:9001</value>
<description>The host and port of master node</description>
</property>
</configuration>

<configuration>
<property>
<name>dfs.replication</name>
<value>2</value>
<description>Default block replication.</description>
</property>

</configuration>

master

Node1

Node2

Node3

via “ssh-keygen” command on all machines and then copied these keys to other nodes via “"ssh-

copy-id” command.

ix. Before first time start, we format NameNode via following command on master machine.

Note: Warning: Do not format a running cluster because this will erase all existing data in the HDFS file
system.

x. In order to start Hadoop cluster, following command was executed on master machine.

It will start all services. But it is recommended that these services should be started separately

via start-dfs.sh and start-mapred.sh scripts.

xi. In order to know different services status on any machine, run “jps” command. It will show all

java services information with PID. On master system, three daemons namely NameNode,

JobTracker and SecondryNameNode while on slave’s data Node and task tracker daemons were

running.

xii. To stop complete cluster at once, followed script was executed

Note: In case of any problem in any node, view corresponding log file in that node.

1.6 Apache Hbase Configuration:

After Apache Hadoop configuration in fully distributed mode, next we have configured Hadoop database

known as Apache Hbase in fully distributed mode. Following steps were carried out for this purpose.

i. Downloaded and extracted a fresh copy of Apache Hbase version 0.94.14 on all four nodes

ii. Updated $HBASE_HOME/conf/hbase-env.sh on all nodes. In this step we have given information

about JAVA_HOME and also informed Hbase that you should not manage Zookeeper i.e.

external Zookeeper ensemble will be used.

$HADOOP_HOME/ bin/hadoop namenode -format

$HADOOP_HOME/ bin/start-all.sh

$HADOOP_HOME/ bin/stop-all.sh

export JAVA_HOME=/usr/java/jdk1.8.0_25/
export HBASE_MANAGES_ZK=false

iii. Updated $HBASE_HOME/conf/hbase-site.xml on all machines with following code.

iv. Updated the $HBASE_HOME/conf/regionservers file on all the hbase cluster nodes. Added

hostnames of all the region like.

v. In order to start/stop and test Hbase, first Hadoop services should be running properly.

Following available scripts were used to start/stop Hbase cluster

vi. In order to check java services details “jps” utility was used.

<configuration>
<property>
<name>hbase.master</name>
<value>Hmaster:12000</value>
</property>
<property>
<name>hbase.master.port</name>
<value>12000</value>
</property>
<property>
<name>hbase.rootdir</name>
<value>hdfs://master:9000/USE_hbase</value>
</property>
<property>
<name>hbase.cluster.distributed</name>
<value>true</value>
</property>
<property>
<name>hbase.zookeeper.property.dataDir</name>
<value>/home/hpcnl/crawler/zookeeper-3.4.5/zookeeperData/1</value>
</property>
<property>
<name>hbase.zookeeper.quorum</name>
<value>zkserver1,zkserver2,zkserver3</value>
</property>
<property>
<name>hbase.zookeeper.property.clientPort</name>
<value>2181</value>
</property>
</configuration>

regionserver1
regionserver2
regionserver3

$HBASE_HOME/bin/start-hbase.sh
$HBASE_HOME/bin/stop-hbase.sh

1.7 Apache Zookeeper Configuration
Apache ZooKeeper is a centralized service for maintaining configuration information, naming, providing

distributed synchronization, and providing group services. It was decided to run external zookeeper

ensemble so that it should not be dependent on Hbase i.e. if Hbase goes down due to some reason even

then zookeeper servers should be up. It is recommended that number of zookeeper servers should be

odd rather than even so that in case of failure of one or more servers, there should not be a tie

condition to continue of stop ensemble for leader [6]. For our cluster development, it was decided to

use three zookeeper servers in ensemble.

For the configuration of zookeeper, following steps were carried out.

i. Downloaded zookeeper that is compatible with Hbase

ii. created a configuration for zookeeper

iii. Updated ZOOKEEPER_HOME/conf/zoo1.cfg with following code

Note: For each server, same configuration file was be used other than datadir.

iv. Logging option was also updated via $ZOOKEEPER_HOME/conf/log4j.properties

v. Commands used to start/stop zookeeper ensemble

vi. In order to test zookeeper server status i.e. is it running properly or not, following solution was
deployed.

If it returns “imok” then server if running properly otherwise there is some problem.

vii. In order to run three Zookeeper servers, same steps should be carried out on each system.

cd $ZOOKEEPER_HOME

cp conf/zoo_sample.cfg conf/zoo1.cfg

tickTime=2000
dataDir=/home/hpcnl/USE/zookeeper-3.4.6/zookeeperData/2
clientPort=2181
initLimit=5
syncLimit=2
server.1=zkserver1:2888:3888
server.2=zkserver2:2889:3889
server.3=zkserver3:2890:3890

log4j.rootLogger=DEBUG, CONSOLE, ROLLINGFILE

bin/zkServer.sh start conf/zoo1.cfg

bin/zkServer.sh stop conf/zoo1.cfg

echo ruok | nc zkserver1 2181

2 Arbitrary Crawling:
As discussed in 3rd deliverable that after Apache Nutch build job completion, two directories (binaries)

are created in runtime directory that are local and deploy. In order to run Nutch crawling job in

distributed mode, deploy binary should be used. It run on MapReduce job on Hadoop workers. We have

configured Apache Nutch on Master Node for distributed crawling. (Although it can be configured on

any system or even on separate system also).

Apache Nutch Configuration
Apache Nutch configuration was updated with following information.

i. Replaced $NUTCH_HOME/conf/hbase-site.xml with Hbase respective file (hbase-site.xml) as

discussed in Hbase configuration section.

ii. $NUTCH_HOME/conf/nutch-site.xml was updated with following code

iii. Other important configuration files are given in Appendix A.

<?xml version="1.0"?>

<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<!-- Put site-specific property overrides in this file. -->

<configuration>

<property>

 <name>http.agent.name</name>

 <value>USE-crawler</value>

</property>

<property>

 <name>storage.data.store.class</name>

 <value>org.apache.gora.hbase.store.HBaseStore</value>

 <description>Default class for storing data</description>

</property>

<property>

 <name>plugin.includes</name>

 <value>protocol-httpclient|protocol-http|indexer-solr|urlfilter-

regex|parse-(html|tika)|index-(basic|more|urdu)|urlnormalizer-

(pass|regex|basic)|scoring-opic|myPlugin</value>

</property>

<property>

<name>parser.character.encoding.default</name>

<value>utf-8</value>

</property>

<property>

 <name>http.robots.403.allow</name>

 <value>true</value></property>

<property>

 <name>db.max.outlinks.per.page</name>

 <value>-1</value>

 </property>

<property>

 <name>http.robots.agents</name>

 <value>USE-crawler,*</value>

 </property>

</configuration>

iv. After some manual effort for seed to find Urdu websites, about 1000 URLs were collected.

v. In order to run Distributed job on Hadoop cluster, it is required that seed file should be placed

on HDFS rather than local file system. So we placed seed file in HDFS.

vi. Nutch provides two scripts “nutch.sh” and “crawl.sh” in bin directory. Second script is properly

scheduled nutch steps in sequence. It is recommended to use this instead of “nutch.sh” at

starting point.

vii. Following command was used to run crawler on Hadoop cluster for about 200 iterations. This

command is similar to what we did at the time of single node cluster. But now this job is

distributed to three workers nodes instead on single system.

viii. After the job completion, raw content was stored on HDFS while index was stored on search

management (SM) system.

ix. Figure 2 shows HDFS states when job was finished. Where USE_hbase is Apache Hbase base

directory that was set at time of configuration. Next is the table name that we gave when

started the job. All crawled content information are kept is this directory. This directory contains

many sub directories that contains raw content and some parsed content such as out links, in

links, meta data of page. Figure 3 shows complete list of all such directories. It has been

obtained via Hadoop web interface that can be accessed via port 10.11.21.41:50070 for our

case.

Figure 2: HDFS State after job completion

bin/crawl urls/urdu-seed.txt USE_CrawlData http://10.11.21.40:8900/solr 200

Figure 3: Crawled content fileds of a document

x. Apache Nutch also created index of crawled document. That can be searched via Solr admin or

through REST API. Figure 4 shows the statistics of Apache Solr current index. There are about 4

million documents in index at this time.

Figure 4: Solr Index Statistics

xi. Solr data directory of collection1 core contains index in raw form. Figure 5 shows such sample

index in data directory in Solr core.

Figure 5: Solr Indexed files list of crawled data

3 Appendix A
This section contains some auxiliary files of Apache Nutch configuration that were used during crawling.

Solrindex-mapping.xml
This files contains mapping of Nutch fields to corresponding fields in Apache Solr. In case of any new

field addition in Nutch, this field should be updated.

<mapping>

 <!-- Simple mapping of fields created by Nutch IndexingFilters

 to fields defined (and expected) in Solr schema.xml.

 Any fields in NutchDocument that match a name defined

 in field/@source will be renamed to the corresponding

 field/@dest.

 Additionally, if a field name (before mapping) matches

 a copyField/@source then its values will be copied to

 the corresponding copyField/@dest.

 uniqueKey has the same meaning as in Solr schema.xml

 and defaults to "id" if not defined.

 -->

 <fields>

 <field dest="content" source="content"/>

 <field dest="title" source="title"/>

 <field dest="host" source="host"/>

 <field dest="batchId" source="batchId"/>

 <field dest="boost" source="boost"/>

 <field dest="digest" source="digest"/>

 <field dest="tstamp" source="tstamp"/>

 <field dest="pageLength" source="pageLength"/>

 <field dest="ur_pcnt" source="ur_pcnt"/>

 <!-- field dest="pf_score" source="pf_score"/ -->

 </fields>

 <uniqueKey>id</uniqueKey>

</mapping>

Regex-urlfilter.txt
This file controls what type of MIME documents are allowed to crawl or what should be stopped. By

default, it only allows text and block images, compressed files, JavaScript and CSS files etc.

 # The default url filter.

Better for whole-internet crawling.

Each non-comment, non-blank line contains a regular expression

prefixed by '+' or '-'. The first matching pattern in the file

determines whether a URL is included or ignored. If no pattern

matches, the URL is ignored.

skip file: ftp: and mailto: urls

-^(file|ftp|mailto):

skip image and other suffixes we can't yet parse

for a more extensive coverage use the urlfilter-suffix plugin

-

\.(gif|GIF|jpg|JPG|png|PNG|ico|ICO|css|CSS|sit|SIT|eps|EPS|wmf|WMF|zip|ZIP|ppt|PPT

|mpg|MPG|xls|XLS|gz|GZ|rpm|RPM|tgz|TGZ|mov|MOV|exe|EXE|JPEG|bmp|BMP|js|JS)$

skip URLs containing certain characters as probable queries, etc.

-[?*!@=]

skip URLs with slash-delimited segment that repeats 3+ times, to break loops

-.*(/[^/]+)/[^/]+\1/[^/]+\1/

accept anything else

+.

4 References:
1. https://www.quora.com/What-is-the-difference-between-Namenode-+-Datanode-and-Jobtracker-+-Tasktracker-and-

Combiners-Shufflers-and-Mappers+Reducers-in-the-following-ways

2. http://www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-linux-multi-node-cluster/

3. https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HDFSHighAvailabilityWithNFS.html

4. http://jayatiatblogs.blogspot.com/2013/01/hbase-installation-fully-distributed.html

5. http://nutch.apache.org

6. https://www.quora.com/HBase-Why-we-run-zookeeper-with-odd-number-of-instance

https://www.quora.com/What-is-the-difference-between-Namenode-+-Datanode-and-Jobtracker-+-Tasktracker-and-Combiners-Shufflers-and-Mappers+Reducers-in-the-following-ways
https://www.quora.com/What-is-the-difference-between-Namenode-+-Datanode-and-Jobtracker-+-Tasktracker-and-Combiners-Shufflers-and-Mappers+Reducers-in-the-following-ways
http://www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-linux-multi-node-cluster/
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HDFSHighAvailabilityWithNFS.html
http://jayatiatblogs.blogspot.com/2013/01/hbase-installation-fully-distributed.html
http://nutch.apache.org/
https://www.quora.com/HBase-Why-we-run-zookeeper-with-odd-number-of-instance

